
Technology under Consideration for
ISO/IEC 23090-14

WG3 Scene Description BoG

MDS25030_WG03_N01494

Table of Contents
1. Extensions . 1

1.1. Support of Spatial Computing in SD*. 1

1.1.1. Introduction . 1

1.1.2. API to access to an external spatial computing module . 1

1.1.3. Semantic Update of the MPEG_anchor extension . 4

1.1.4. Processing Model. 9

1.1.5. References. 9

2. Codec Support . 10

2.1. Dynamic mesh support in scene description. 10

2.2. Support for multiple atlases for MIV applications (MPEG142) . 10

2.2.1. Multiple atlases . 10

2.2.2. References . 17

2.3. Support for multi-view video and multi-channel audio sources . 17

2.3.1. Introduction . 17

2.3.2. Potential Solution to Support Multi-view Video . 18

2.3.3. References . 19

3. Interfaces . 20

3.1. Supporting Multiple Viewers in the Media Access Function . 20

3.1.1. General . 20

3.1.2. Proposed Updates to MAF API . 20

3.2. Generic API for Presentation Engine . 21

3.2.1. Generic Render Control API . 22

3.2.2. Extension for Audio Node Mapping . 25

4. MPEG-I Audio in Scene Description. 27

4.1. On spatial synchronization between graphs . 27

4.1.1. Attempt problem definition for the spatial synchronization. 27

4.1.2. Approach proposal for the spatial synchronization. 29

4.1.3. Conclusion . 31

4.1.4. References . 31

4.2. Immersive audio support in Scene Description . 31

4.2.1. Introduction . 31

4.2.2. Main assumptions. 32

4.2.3. Support of immersive audio in Scene Description . 33

4.2.4. References . 36

5. Interactivity framework . 37

5.1. On event-based scene update . 37

5.1.1. General . 37

5.1.2. A use case for event based updates . 38

5.1.3. JSON patch limitations. 39

5.1.4. Semantics for event-based update . 40

5.2. Mapping interactivity to Khronos extension . 41

5.2.1. Introduction . 41

5.2.2. Overview of both Interactivity Frameworks . 41

6. Collected problem statements and industry needs . 54

6.1. On the support of real environment data. 54

6.1.1. General . 54

6.1.2. Representation of the real environment. 54

6.1.3. Storing a representation of the real environment . 55

6.1.4. Examples of framework for real environment handling . 56

7. Avatar . 59

7.1. Update of the Description of the MPEG reference avatar model Morgan 59

7.1.1. Introduction . 59

7.1.2. References . 65

Appendix A: Disclaimer . 66

Chapter 1. Extensions

1.1. Support of Spatial Computing in SD*
Source m70188

1.1.1. Introduction

The m70186 contribution [1] proposes a use case related to spatial computing and some
requirements related to the support of spatial computing in MPEG-SD.

The m67595 contribution presented some configuration examples of XR spatial computing in recent
AR devices (e.g. Apple “scene reconstruction and understanding” API and Microsoft
XR_MSFT_scene_understanding Khronos OpenXR vendor extension). It also proposed a high-level
architecture to address the need of time and spatial synchronizations between the Scene
Description graph managed by a Presentation Engine and the representation of the user real
environment managed by an external Spatial Computing module.

This contribution proposes an API that can be exposed by such a Spatial Computing module to
configure and retrieve the representation of the real scene around the user and to integrate a
virtual scene into this real scene. The proposed API is inspired by the one specified in the Microsoft
OpenXR scene understanding extension ([3]).

This contribution also proposes new semantics for the MPEG_anchor extension of MPEG scene
description ([1]), to provide configuration parameters for the spatial computing module.

1.1.2. API to access to an external spatial computing module

The high-level architecture proposed in contribution m67595 is provided in Figure 1.

Figure 1:High-level architecture for XR Spatial Computing Support

1

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/762

A Spatial Computing API exposes to the presentation engine a set of functions:

• To initialize and configure the external spatial computing module: creation of a session between
the two modules, setting of parameters needed by the external module to handle its scene.

• To start or stop the external module processing.

• To notify the external module that update occurred in the scene managed by the presentation
engine.

• To register callbacks for the external module to request status from the PE module or to notify
updates occurred in the real scene.

A spatial computing module maintains a representation of the user environment. It is the unique
entry point for a presentation engine module to get the knowledge of the real scene around the
user and to integrate a virtual scene into this real scene.

The following table describes the functionalities that may be provided by this Spatial Computing
API.

Method Description

init () Initialization of the SC module and creation of a session between the PE
and the SC module.

configure () Configures the way the real scene must be scanned, by specifying a set
of parameters. Those parameters should be linked to a reference XR
space, e.g. the one related to a trackable or an Anchor.

In case of multiple trackables or Anchors defined for the XR experience,
multiple set should be specified.

For each XR space, the parameters to this method may include:

• An id for the XR space (xrSpaceId)

• An occurrence value specifying the rate at which the scan must be
updated.

• A set of options for the scan processing, such as level of details, mesh
types…),

• A set of volumes where scanned objects must be provided. Real scan
objects that intersect one or more of the bounding volumes should
be used, and all other objects ignored. Scan volumes may overlap
between 2 XR spaces. In that case, real object contained in the
overlap section may be provided twice, or only once for one of the
spaces.

start ()

stop ()

Starts or stops the creation and update of the real scenes. The input
parameter should be a set of xrSpaceId to specify the trackables around
which the scan of real objects must be performed.

2

Method Description

registerCallbacks () Provides callback functions to the SC module to allow it to send updates
or status of the world scene.

A list of callbacks is given as input, with the following parameters for
each one:

• A value giving the goal of the callback, e.g. an enumeration with the
following possible values: UPDATES, STATUS…,

• a pointer to a callback function

The parameters of an UPDATES callback are a list of objects that may
include:

• The operation to perform, e.g. ADD, UPDATE or REMOVE

• A timestamp value

• For ADD, the reference and the xrSpaceId of the new object as well
as a dictionary of attributes and their initialization values.

• For UPDATE, the reference and the xrSpaceId of the object as well as
a dictionary of attributes and their new values.

• For REMOVE, the reference of the object to remove.

• The SC module may automatically call this UPDATE callback at the
same occurrence of the scan process, or it may call it when
significative changes has occurred.

The parameters of a STATUS callback are a list of objects that may
include:

• xrSpaceId

• an object reference (if absent, all the scene related to xrSpaceId is
considered)

• the status of the referenced object e.g. ONGOING, COMPLETE,
NOT_VALID, PARTIAL…

• The SC module may send this STATUS callback multiple times after a
scan process has been started or each time this status changes.

3

Method Description

getSceneComponents () Requests one or more element(s) of the world scene. The following set of
optional input parameters give filtering criteria for this request:

• A time value, to request the world scene at a given historical time or
predicted time. This parameter may be used with an XR device able
to store past versions of the world scene or able to predict it in the
future. A time limit in both directions may be specified, depending
on the capacity of the XR UE (e.g. a few second in the past and a few
tens of ms in the future).

• xrSpaceId to request elements related to a given XR space.

• A list of scan volumes to request elements contained in one of the
specified volumes.

• A list of object semantics to request elements with one of the given
semantics (wall”, “floor”, “table”, “chair”, “light”, “sound”,
“freespace” …).

• A list of object references to request elements with one of the given
ids.

}

This method should return a status of the world scene (same possible
values as in the STATUS callback) and if OK (status = COMPLETE), should
return the graph of the world scene or of some word scene elements,
each returned element coming with a set of attributes that may include:

• An object reference

• A set of visual, lighting, and physical attributes

• A set of semantic attributes

Table 1: Spatial Computing API

1.1.3. Semantic Update of the MPEG_anchor extension

A content creator may want to express in a scene description file how its AR content interacts with
the user environment. For that, some new spatial computing parameters are needed, that will give
some recommended parameters to configure the spatial computing module.

In MPEG-SD, MPEG_anchor extension specifies an element of the real world where virtual elements
should be positioned.
New parameters can be added in MPEG_anchor extension to configure the 3D Model Construction.
The following tables gives the new semantics and possible values for each configuration
parameters.

Table 2 – Definition of the Anchor object (table 27 of [1])

4

Name Type Usage Default Description

trackable integer M Index of the trackable in the
trackables array that will be used
for this anchor.

requiresAnchoring boolean M Indicates if AR anchoring is
required for the rendering of the
associated nodes.

If TRUE, the application shall skip
the virtual assets attached to this
anchor until the pose of this anchor
in the real world is known.

if FALSE, the application shall
process the virtual assets attached
to this anchor

minimumRequiredSp
ace

vec3 O (0,0,0) Space required to anchor the AR
asset (x, y, z in meters). This space
corresponds to an axis-aligned
bounding box, placed at the origin
of the trackable space and
extending along the positive x+,y+,
and z+ axes, expressed in the
trackable local space. This value
shall be compared to the bounding
box of the real-world available
space associated with the trackable
as estimated by the XR runtime.

aligned enumeration O NOT_USE
D

the aligned flag may take one of the
following values: NOT_USED=0,
ALIGNED_NOTSCALED=1,
ALIGNED_SCALED=2.

If ALIGNED_SCALED is set, the
bounding box of the virtual assets
attached to that anchor is aligned
and scaled to match the bounding
box of the real-world available
space associated with the trackable
as estimated by the XR runtime.

5

Name Type Usage Default Description

actions array(number) O N/A Indices of the actions in the actions
array of the interactivity extension
to be executed once the pose of this
anchor is determined. An example
is a setTransform action to place
the virtual assets attached to that
anchor.

light integer O N/A Reference to an item in the lights
array of the
MPEG_lights_texture_based
extension.

useReal Boolean O False If true, the scan of the real word is
needed for the integration of the
virtual objects:

• As simplified meshes to be used
for physics simulation
(collision, occlusion…)

• As full mesh/texture to handle
relighting.

• …

If (useReal)

scanOptions Array O N/A Array of options (enumeration) for
the scan computation: possible
values are given in Table 3.

scanDetails Object O N/A Specifies the required level of detail
for the mesh (number/type of
primitives/m3) and for the texture
of the visual mesh. The semantics is
presented in Table 4.

scanOccurence Enum O N/A Specifies when the scan of real
objects must be updated (Table 5).

scanVolumes Array O N/A Array of bounding volumes that
determine the spaces where
scanned objects must be used. Real
scan objects that intersect one or
more of the bounding volumes
should be used, and all other
objects ignored. The semantics for
these volumes are presented in
Table 6.

6

Name Type Usage Default Description

realSemantic Array O N/A Semantic descriptions of nodes that
are needed (“table”, “room”,
“chair”, “wall”, “light”, “freespace”
…)

The possible values for a scanOptions item are given in the following table, with some of them
based on the MSFT OpenXR extension [3].

Enumeration value Description

PLANE Request plane data for scanned objects

PLANAR_MESH Request planar meshes for scanned objects

VISUAL_MESH Request 3D visualization meshes for scanned objects

COLLIDER_MESH Request 3D collider meshes for scanned objects

FREE_VOLUME Request to get the available space around a trackable

POINT_CLOUD Request a points cloud representation

BOUNDING_BOX Request a simplified collider mesh

TEXTURED_MESH Request mesh with a texture

Table 3: scanOptions item values

The semantics of a scanDetail object is given in the following table:

Parameter name Type Usage Description

primitivesNumber number O Gives the quantity of geometric primitives per m3

primitiveType Enum O Gives the types of primitives: see Table 5

TextureOptions Array O Array of options (e.g. enumeration) for the
texturing details. Possible values may be:

• LOW_RES, HIGH_RES for the resolution of the
texture or the exact resolution (e.g. 1024x768),

• LOW_LIGHT, HIGH_LIGHT for the level of
lightning of the texture

• RGB, RGBA…for the texture format

• …

Table 4: scanDetail objects semantics

The possible values for a primitive type are given in the following table:

Enumeration value Description

QUAD Mesh of 3D Model is represented by an array of Quad

7

Enumeration value Description

TRIANGLE Mesh of 3D Model is represented by an array of TRIANGLE

POINT CLOUD 3D Model is represented by a point cloud

GAUSSIAN_SPLAT 3D Model is represented by an array of gaussian

Table 5: primitiveType values

The possible values for the scanOccurence parameter are given in the following table. Several of
these possible values may be combined to address different scenarios (e.g. ONCE AND AUTO).

Enumeration value Description

ONCE the scan is performed only once, for instance in case of a static real
scene

N_FRAME the scan is performed periodically, every N rendering frames, N
depending on the dynamism of the real scene.

AUTO the scan occurrence is managed by the SU module. The SU module
may perform a light pre-analysis to detect significant moves in the
real world and start a complete new scan. This pre-analysis may be
performed from raw images data, like RGB images from a camera or
depth images from a depth sensor.

Table 6:scan occurrence

Here is the semantics for a scanVolumes object (example based on the MSFT OpenXR extension
[3]). 3D coordinates are expressed in the XR space related to trackable associated to the anchor.

Parameter name Type Usage Description

type Enum M SPHERE, BOX, FRUSTUM

If (type == SPHERE)

Center array M 3D coordinate of the center of the sphere

Radius number M Radius of the sphere in meters.

If (type == BOX)

pose matrix M 4*4 matrix representing the center position
and orientation of the box

extents array O Edge-to-edge length of the box along each
dimension.

If (type == FRUSTUM)

pose matrix M 4*4 matrix representing the position and
orientation of the tip of the frustum

fov Vec4 M Angles of the four sides of the frustum

8

Parameter name Type Usage Description

far number M Positive distance of the far plane or the
frustum

near number M Positive distance of the near plane or the
frustum

Table 7: scanVolumes object semantics

1.1.4. Processing Model

To be added to the processing model of the anchor:

When processing the MPEG_anchor extension, if useReal is set to True, the Presentation Engine
shall configure the Spatial Computing module with specifics parameters such as scanOptions,
scanDetails, scanOccurence, scanVolumes, scanSemantic

At runtime, the Presentation Engine shall then use the API to request elements of the world scene
or update the configuration.

1.1.5. References

[1] Text of ISO/IEC FDIS 23090-14 2nd edition Scene description, April 2024

[2] OpenXR™

[3] XR_MSFT_scene_understanding OpenXR extension

9

https://www.khronos.org/openxr/
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#XR_MSFT_scene_understanding

Chapter 2. Codec Support

2.1. Dynamic mesh support in scene description
V-DMC is considerd for future Amendment

2.2. Support for multiple atlases for MIV applications
(MPEG142)
Source: m62515

2.2.1. Multiple atlases

2.2.1.1. Motivation

A V3C bitstream can be decomposed into one or more atlas sub-bitstreams and their associated
video sub-bitstreams. The video sub-bitstreams for each atlas may include video-coded occupancy,
geometry, and attribute components. In the V3C parameter set (sub-clause 8.4.4.1 in [3]),
vps_atlas_count_minus1 plus 1 indicates the total number of atlases in the current bitstream. The
value of vps_atlas_count_minus1 is in the range of 0 to 63, inclusive.

With the proposal in Section 2.2.1 to support multiple atlases in the MPEG_primitive_V3C extension,
MPEG-I SD remains future proof to any future derivation of V3C specification which may depend on
multiple atlases along with common atlas data. One derived V3C specification in ISO/IEC 23090-12,
specified the use of common atlas data which is common to atlases in the V3C bitstream.

2.2.1.2. Overview

The proposals take the following aspects into consideration:

• Logical grouping of the relevant syntax to describe an atlas in the MPEG_primitive_V3C
extension.

• Use of atlasID property to identify the atlas identifier which is equal to vps_atlas_id[k] specified
in 8.4.4.1 of ISO/IEC 23090-5[3]. In case there are multiple atlases in the V3C bitstream, atlasID
provides a unique identifier stored in the bitstream to uniquely identify an atlas in
_MPEG_primitive_v3c extension and establishes a corresponding relation with atlas definition
in the bitstream.

2.2.1.3. Array of atlases

A new property is defined under the _MPEG_primitive_V3C extension named atlases. The atlases
property is an array of components corresponding to an atlas. The length of the atlases array shall
be equal to the number of atlases for a V3C object. The properties for an object in the atlases array
describe the atlas data component and corresponding video-coded components such as attribute,
occupancy, and geometry for a V3C object.

The atlasID property is an integer values, where each integer value refers to the vps_atlas_id

10

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/484

specified in sub-clause 8.4.4 in [3] for each atlas in the V3C bitstream.

2.2.1.3.1. MPEG_primitive_V3C

glTF extension to specify support for V3C compressed primitives.

Table 1. MPEG_primitive_V3C Properties

Type Description Required

atlases MPEG_primitive_V3C.atl
as [1-*]

An array of atlases  Yes

_MPEG_V3C_CAD MPEG_primitive_V3C._MP
EG_V3C_CAD

This object lists
different properties
described for the
Common Atlas Data in
ISO/IEC 23090-5.

No

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C.schema.json

2.2.1.3.1.1. MPEG_primitive_V3C.atlases

An array of atlases

• Type: MPEG_primitive_V3C.atlas [1-*]

• Required:  Yes

2.2.1.3.1.2. MPEG_primitive_V3C._MPEG_V3C_CAD

This object lists different properties described for the Common Atlas Data in ISO/IEC 23090-5.

• Type: MPEG_primitive_V3C._MPEG_V3C_CAD

• Required: No

2.2.1.3.1.3. MPEG_primitive_V3C.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

11

2.2.1.3.1.4. MPEG_primitive_V3C.extras

Application-specific data.

• Type: any

• Required: No

2.2.1.3.2. MPEG_primitive_V3C._MPEG_V3C_CAD

defines the common atlas data for a v3c object

Table 2. MPEG_primitive_V3C._MPEG_V3C_CAD Properties

Type Description Required

MIV_view_parameters integer indicates the accessor
index which is used to
refer to the list of MIV
view parameters.

 Yes

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C._MPEG_V3C_CAD.schema.json

2.2.1.3.2.1. MPEG_primitive_V3C._MPEG_V3C_CAD.MIV_view_parameters

indicates the accessor index which is used to refer to the list of MIV view parameters.

• Type: integer

• Required:  Yes

• Minimum: >= 1

2.2.1.3.2.2. MPEG_primitive_V3C._MPEG_V3C_CAD.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

2.2.1.3.2.3. MPEG_primitive_V3C._MPEG_V3C_CAD.extras

Application-specific data.

12

• Type: any

• Required: No

2.2.1.3.3. MPEG_primitive_V3C.atlas

glTF extension to specify support for V3C compressed primitives.

Table 3. MPEG_primitive_V3C.atlas Properties

Type Description Required

_MPEG_V3C_CONFIG integer  Yes

_MPEG_V3C_AD integer  Yes

_MPEG_V3C_GVD_MAP
S

integer [1-*] an array of references
to video texture maps.

 Yes

_MPEG_V3C_OVD_MAP integer [0-*] a reference to a video
texture that provides
the occupancy map

No

_MPEG_V3C_AVD MPEG_primitive_V3C.att
ribute [0-*]

No

_MPEG_V3C_CAD object This object lists
different properties
described for the
Common Atlas Data in
ISO/IEC 23090-5.

No

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C.atlas.schema.json

2.2.1.3.3.1. MPEG_primitive_V3C.atlas._MPEG_V3C_CONFIG

• Type: integer

• Required:  Yes

• Minimum: >= 0

2.2.1.3.3.2. MPEG_primitive_V3C.atlas._MPEG_V3C_AD

a reference to the accessor that points to the atlas data.

• Type: integer

13

• Required:  Yes

• Minimum: >= 0

2.2.1.3.3.3. MPEG_primitive_V3C.atlas._MPEG_V3C_GVD_MAPS

an array of references to video textures that provide the geometry maps.

• Type: integer [1-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required:  Yes

2.2.1.3.3.4. MPEG_primitive_V3C.atlas._MPEG_V3C_OVD_MAP

a reference to a video texture that provides the occupancy map

• Type: integer [0-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required: No

2.2.1.3.3.5. MPEG_primitive_V3C.atlas._MPEG_V3C_AVD

An array of references to the video textures that provide the attribute data

• Type: MPEG_primitive_V3C.attribute [0-*]

• Required: No

2.2.1.3.3.6. MPEG_primitive_V3C.atlas._MPEG_V3C_CAD

This object lists different properties described for the Common Atlas Data in ISO/IEC 23090-5.

• Type: object

• Required: No

2.2.1.3.3.7. MPEG_primitive_V3C.atlas.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

2.2.1.3.3.8. MPEG_primitive_V3C.atlas.extras

Application-specific data.

• Type: any

• Required: No

14

2.2.1.3.4. MPEG_primitive_V3C.attribute

defines the attribute of a V3C object.

Table 4. MPEG_primitive_V3C.attribute Properties

Type Description Required

type integer provides the type of the
attribute.

No

maps integer [1-*]  Yes

extensions object JSON object with
extension-specific
objects.

No

extras any Application-specific
data.

No

Additional properties are allowed.

• JSON schema: MPEG_primitive_V3C.attribute.schema.json

2.2.1.3.4.1. MPEG_primitive_V3C.attribute.type

provides the type of the attribute.

• Type: integer

• Required: No

• Minimum: >= 0

• Maximum: <= 255

2.2.1.3.4.2. MPEG_primitive_V3C.attribute.maps

provides the references to the corresponding video texture maps.

• Type: integer [1-*]

◦ Each element in the array MUST be greater than or equal to 0.

• Required:  Yes

2.2.1.3.4.3. MPEG_primitive_V3C.attribute.extensions

JSON object with extension-specific objects.

• Type: object

• Required: No

• Type of each property: Extension

15

2.2.1.3.4.4. MPEG_primitive_V3C.attribute.extras

Application-specific data.

• Type: any

• Required: No

Following is an example illustrating the use of the syntax described in Section 2.2.1.3.3

{
 "meshes": [{
 "name": "v3c_mesh",
 "primitives": [{
 "attributes": {
 "POSITION": 0,
 "COLOR_0": 1
 },
 "mode": 0,
 "extensions": {
 "MPEG_primitive_V3C": {
 "atlases": [{
 "atlasID": 1,
 "_MPEG_V3C_OVD_MAPS": [2],
 "_MPEG_V3C_GVD_MAPS": [3, 4],
 "_MPEG_V3C_AVD": [{
 "type": 0,
 "maps": [5, 6]
 },
 {
 "type": 4,
 "maps": [7, 8]
 }
],
 "_MPEG_V3C_CONFIG": 9,
 "_MPEG_V3C_AD": {
 "buffer_format": "baseline",
 "accessor": 10
 }
 }],
 "_MPEG_V3C_CAD": {
 "MIV_view_parameters": 114
 }
 }
 }
 }]
 }]
}

16

2.2.2. References

[1] m61138, "Support for multiple atlases for MIV application", MPEG 140, Mainz Meeting, October
2022.

[2] WG7N00553, "Technologies under Consideration on Scene description", MPEG 141, Online,
January 2023.

[3] ISO/IEC 23090-5:2021 Information technology — Coded representation of immersive media —
Part 5: Visual volumetric video-based coding (V3C) and video-based point cloud compression (V-
PCC), Online, https://www.iso.org/standard/73025.html

2.3. Support for multi-view video and multi-channel
audio sources
Source: m71320

2.3.1. Introduction

The MPEG-I Scene Description extensions to glTF 2.0, specifically MPEG_texture_video and
MPEG_audio_spatial, enhance the integration of dynamic media elements within 3D scenes,
facilitating more immersive and interactive experiences.

The MPEG_texture_video extension enables the incorporation of video textures on 3D models. By
linking a glTF texture object to external media and its respective track, this extension allows for the
dynamic updating of textures in real-time, such as applying a live video feed to a surface within the
3D environment. This is achieved through a reference to a timed accessor, which provides access to
the decoded video frames for seamless integration.

The MPEG_audio_spatial extension introduces support for spatial audio within glTF scenes. It
allows for the definition of audio sources (source), reverb effects (reverb), and listeners (listener)
within the scene graph. Audio sources can be of type 'Object' for mono audio or 'HOA' for Higher-
Order Ambisonics, enabling 3D positional audio rendering. Reverb effects can be applied to audio
sources to simulate environmental acoustics, and listeners, typically attached to camera nodes,
represent the audio output in the scene, ensuring that audio perception aligns with the viewer’s
position and orientation.

Recently, Spatial video, a 3D format that adds depth and dimension to traditional 2D videos, has
gained popularity among users due to the immersive experience that it provides and the ease of
capturing on Apple devices. Unfortunately, rendering of spatial video textures that are integrated in
3D scenes is not supported yet.

Similarly, multi-channel audio formats have become integral to modern entertainment, delivering
immersive sound experiences across various platforms. These formats are prevalent in home
theater systems, streaming services, and gaming consoles, providing listeners with rich, surround
sound that enhances the realism of audio content. Unfortunately, the MPEG_audio_spatial extension
currently lacks support for multi-channel audio sources.

In this contribution, we propose to start working on the necessary extensions to the

17

https://www.iso.org/standard/73025.html
https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/794

MPEG_texture_video and MPEG_audio_spatial to add support for multi-view and multi-channel
sources in Scene Description.

2.3.2. Potential Solution to Support Multi-view Video

In order to support multi-view video sources in 3D scenes, it is important to provide both all view
textures as well as the necessary metadata to enable the Presentation Engine to properly render the
video texture.

In the simplest scenario, a stereo video is used as a texture, where the intrinsic and extrinsic
parameters of the scene camera match those of the stereo camera used to capture the stereo video.
In such a scenario, the left video texture is shown to the left eye and the right video texture is
shown to the right eye. No further processing would be needed.

However, for scenarios where there are multiple views or where the stereo rendering cameras do
not match the capture cameras, re-projection of the views would be required.

To enable these different scenarios, we propose the following signaling as part of the
MPEG_texture_video glTF extensions.

Name Type Defa
ult

Usa
ge

Description

extras Extensions go into extras element of MPEG_texture_video
extension.

group_id numb
er

N/A M A group identifier that indicates that multiple video textures
are associated together.

group_type Enum N/A M Indicates the type of the group, currently “stereo” and “multi-
view”
types are defined.

camera Object N/A O Intrinsic and extrinsic camera parameters object, that is
assumed to be
the target for rendering the content

mask Enum right O Mask that indicates to which eye this video texture is visible

For cases where all views are multiplexed into a single track, the track array in the alternatives
element of the MPEG_media may reference a particular layer by using the following syntax:

reference = track_id “:” layer_id

The receiver starts by grouping all textures that belong to the same group. It is the case that only
the main view’s texture is referenced in a material element. The metadata is then parsed to
understand the nature of the relationship between the different textures. If camera parameters are
present, the Presentation Engine has a choice of either fixing the rendering camera to match these
camera parameters, effectively limiting the experience to a 3DoF experience, or configure proper
processing to adjust the video texture depending on the current viewer’s pose by performing re-
projection.

18

The relationship to MIV and to the 3GPP extension for signaling split rendering output still needs to
be studied.

Support for Multi-channel Audio Sources

In order to support multi-channel audio sources, the Presentation Engine needs to recreate the
speaker setup of the multi-channel source virtually around the audio source node. Each speaker in
the speaker layout provides a transform matrix that places that speaker in the correct position with
respect to the audio source node.

Two new audio source types are defined “stereo” and “multi-channel”. When the type is set to
“stereo” or “multi-channel”, an array of transformations is also provided as layoutTransforms,
where each element matches the speaker of a specific channel. When rendering such an audio
source, a set of sub audio sources is created with the correct placement around that audio source
using the layoutTransforms. This is effectively creating several audio sources per multi-channel
audio source.

The layout may be signaled using a standardized speaker layout as defined in ISO/IEC 23091-8 [2]
clause 8.2 on the output channel positions. In this case, a single global transform is sufficient and is
applied to all loudspeakers to generate the virtual audio sources. Hence, for standardized speaker
layouts, the information needed will be the channel mapping (as described in table 7 of [2]) and a
global transform matrix.

2.3.3. References

[1] ISO/IEC 23090-14 2nd Edition, MPEG-I Scene Description

[2] ISO/IEC 23091-8, Information technology — MPEG systems technologies — Part 8: Coding-
independent code points

==

19

Chapter 3. Interfaces

3.1. Supporting Multiple Viewers in the Media Access
Function
Source: m58510

3.1.1. General

In the Presentation Engine of the MPEG-I Scene Description architecture, the viewer’s view of the
scene is determined by the camera used for rendering the scene from the viewer’s viewpoint. In
many use cases, the Presentation Engine runs on the end user’s device and therefore there is only
one viewer for the scene and one camera object is used at any given point in time for composition
and rendering. Using the camera information provided by the Presentation Engine, the MAF can
identify which objects in the scene are within the viewing frustum of the camera at a given time
instance.

However, in some scenarios multiple cameras are used for rendering the scene from a number of
viewpoints corresponding to different viewers of the same scene (e.g., in multi-viwer applications
such as online conferencing applications with multiple users). In such scenarios, information about
the cameras used to generate each viewer’s view of the scene, including both intrinsic and extrinsic
camera parameters, are required by the MAF to identify and request the appropriate media or
media parts for each viewer.

Since a media pipeline is tightly coupled with the type of the media, it may not be desirable to have
multiple media pipelines for the same content for different viewers. Rather, the MAF should allow a
single media pipeline for a media content to be used for composition and rendering for different
viewers.

3.1.2. Proposed Updates to MAF API

To support media fetching for multi-viewer applications, where each viewer may have their own
extrinsic and intrinsic camera parameters, relevant methods in the MAF API and their definition
should be updated as follows (updates are in bold).

3.1.2.1. Methods

Table 5. n/a

20

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/242

Methods State after success Description

startFetching() ACTIVE Once initialized and in READY
state, the Presentation Engine
may request the media pipeline
to start fetching the requested
data.

The initialization may be
performed using view
information for one or more
viewers.

updateView() ACTIVE Update the current view
information. This function is
called by the Presentation
Engine to update the current
view information, if the pose or
object position have changed
significantly enough to impact
media access. It is not expected
that every pose change will
result in a call to this function.

A call to this function shall
include the view information
for only those views whose
parameters have significantly
changed.

3.1.2.2. IDL for media pipeline

interface Pipeline {
 readonly attribute Buffer buffers[];
 readonly attribute PipelineState state;
 attribute EventHandler onstatechange;
 void initialize. (MediaInfo mediaInfo, BufferInfo bufferInfo[]);
 void startFetching (TimeInfo timeInfo, ViewInfo viewInfo[]);
 void updateView. (ViewInfo viewInfo[]);
 void stopFetching. ();
 void destroy. ();
};

3.2. Generic API for Presentation Engine
Source: m66705

21

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/651

3.2.1. Generic Render Control API

The Generic Render Control API is an abstract API that is offered by external renderers to enable
applications, such as Presentation Engines, to control the rendering process by aligning and
synchronizing their rendering state to that of the Presentation Engine. This API is used by the
Presentation Engine to configure and update the status of the external renderer.

The following table describes the functionality provided by the Render Lock-in API:

Method Description

init() Initializes the external renderer by providing the related media source
information and their corresponding buffers. It also establishes a session
between the Presentation Engine and the external renderer.

The inputs to this method call should be:

• A media source object that contains a handler to the buffer(s), where the
source media will be made available by the MAF. A description of the
media source and the contents of each buffer shall also be provided.

22

Method Description

configure() Configures the external renderer to establish an initial alignment and
synchronization between the Presentation Engine and the external
renderer.

The parameters to this method may include:

• A mapping between the initial timestamp of the common Presentation
Engine timeline and that of the media associated with the external
renderer. It also provides information about the clock rate of the
Presentation Engine.

• A list of mapped nodes in the source media rendered by the external
renderer. This list shall at least contain one object with a mapping to the
main camera of the main scene description. For audio renderers, this
may be the audio listener. The information is provided by the the
MPEG_node_mapping extension in the scene description document. It
should also provide the initial position and transformation of the
mapped nodes after applying the transformations associated with these
node mappings. .

• A description of the scene bounding box using the glTF 2.0 spatial
coordinate system. The external renderer uses this information to
establish a spatial alignment between the scene coordinate system and
the coordinate system that is used by the source media. The external
renderer may align the bounding box of the scene to that of its media
stream, which establishes the transformation that needs to be applied to
all spatial coordinates exchanged over the API, in order to determine the
corresponding coordinates in the coordinate system of the media
stream.

• A list of tracked AR anchors that may be used by the external renderer.

The external renderer may then subscribe for updates to specific aligned
nodes or it may specifically ask for current state for these nodes, using the
referenceId.



all exchanges over this API are based on the scene (glTF2.0)
coordinate system. It is the responsibility of the external
renderer to convert into their own coordinate system. The
Presentation Engine does not consider any other coordinate
systems other than the one established by the scene
description.

23

Method Description

start()

pause()

resume()

stop()

Allows the Presentation Engine to control the playback of selected media
sources associated with the external renderer for interactivity purposes.

update() Used by the Presentation Engine to update node positions and orientations
for which there is a mapping with the external renderer. Updates may result
from received scene updates, user interactions, animations, physics
simulations, or any other events.

The parameters passed to this method are an array of objects consisting of:

• The referenceId of the node to which this update applies

• The transform matrix that sets the current pose of the tracked object
after applying the transform operation as described by the
corresponding MPEG_node_mapping. Any further adjustments need to
be applied by the external renderer to align with its internal coordinate
system.

updateGraph() The Presentation Engine uses the updateGraph function to add, update, or
remove a set of nodes to the internal representation of the scene that is
maintained by the external renderer. Only nodes that have a mapping with
the external renderer can be passed through this method.

The parameters to this method are an array of objects that include:

• The graph operation: ADD, REMOVE, UPDATE

• For ADD: the referenceId and the initialization information for the
associated media data to the object that is to be added.

• For REMOVE: the referenceId of the object to be removed.

• For UPDATE: the referenceId of the object to be updated, as well as a
dictionary of attributes and their update values.

registerCallback() The Presentation Engine may provide a callback function to the external
renderer to allow it to query the status of certain parameters at any time.
This may for example include asking for the current user pose.

The Presentation Engine shall register a callback function whenever
possible.

The following is a description for the API in IDL (ISO/IEC 19516):

interface GenericRenderControl {
 void init();
 void configure();

24

 void start();
 void pause();
 void resume();
 void stop();
 update();
 void updateGraph();
 void registerCallback();
};

3.2.2. Extension for Audio Node Mapping

3.2.2.1. General

The MPEG node mapping extension, identified by MPEG_node_mapping, establishes a mapping
between the node in the scene description document and an external entity. An example is the
mapping between a node that contains a car and an external audio node in an MPEG-I Audio
bitstream, with a simplified geometry of that car and the attached audio sources. The following
figure depicts that example:

Figure 1. A black and white image of a camera Description automatically generated

When present, the MPEG_node_mapping extension shall be included in a node object.

3.2.2.2. Semantics

The definition of all objects with the MPEG_node_mapping extension is provided in the following
table:

Name Type Default Usage Description

mappings array(object) M An array of mappings associated with
the containing node.

Role string “urn:mp
eg:sd:rol
e:default
”

O An identifier of the role associated with
this mapping. The role may for instance
be “urn:mpeg:sd:role:audio-renderer” to
indicate that the component is an audio
renderer.

source number N/A M The index in the MPEG_media that
provides the media resource that
contains the mapped element.

referenceId number N/A M An identifier of the element in the
referenced resource.

25

Name Type Default Usage Description

transform array(numb
er)

Identity O A 4x4 matrix that supplies the transform
used to align the referenced element to
the current node.

supportsInteractivity boolean false O Indicates if interactivity actions applied
to the node should be exposed if an API
is made available to the Presentation
Engine by the renderer of the resource.

3.2.2.3. Processing Model

When processing the MPEG_node_mapping extension, the Presentation Engine shall identify nodes
in the scene description that have a node mapping. The Presentation Engine shall determine if the
component identified by the indicated role supports the Rendering Alignment API as defined in
contribution m65395. If it does, the Presentation Engine shall pass the mapping information to the
identified component.

The Presentation Engine shall then use the API to align the rendering with the component as
configured over the API.

26

Chapter 4. MPEG-I Audio in Scene
Description

4.1. On spatial synchronization between graphs
Source: m67011

4.1.1. Attempt problem definition for the spatial synchronization

4.1.1.1. Virtual Reality (VR) use case

The VR use case corresponds to an animated virtual car. Each wheel can be animated individually.
Spatial sounds are generated by the motor of the car, and by the contact of each wheel on the road.

Figure 2 provides the SD and the immersive audio graph representations of the virtual car.

It can be noticed that these two graphs have not the same topology and not the same global XR
Space (i.e., the global frame of reference in which 3D coordinates are expressed).

The following node mappings have been created:

• Between the root nodes of the car to ensure a consistent car animation

• Between each node related to a wheel to ensure a consistent wheel animation

Figure 2. SD and immersive audio graph representations of a virtual car

Note 1: The node mapping needs to be investigated, when an extent is added to an audio source, to
ensure the spatial synchronization of both the audio source and its extent. For example, the two
following approaches may be envisaged if an extent is added to a wheel of the car:

• To allow nested spatial transformation nodes in the immersive audio graph Figure 3

◦ The audio source and its extent would then be the children of a mapped spatial
transformation node

• Or to allow the extent to be a child of the mapped audio source Figure 4

Figure 3. Possible approaches to ensure a spatial synchronization for both an audio source and its extent

27

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/670

Figure 4. Possible approaches to ensure a spatial synchronization for both an audio source and its extent

The following issues need to be addressed to ensure a spatial synchronization between the two
graphs:

• the knowledge of the transformation matrix between the global XR Space B and B’,

• the identification of which initial parameters to be provided to the immersive audio renderer
through the render control API at the configuration step,

• the identification of which parameters to be provided to the immersive audio renderer through
the render control API to maintain the spatial synchronization during the VR experience.

4.1.1.2. Augmented Reality (AR) use case

In this use case, the virtual car of section 2 is inserted to the user’s real environment using AR
anchoring.

MPEG-I Scene Description has defined a dedicated MPEG_anchor glTF extension to support AR
anchoring of virtual assets represented by a node graph.

The MPEG_anchor extension defines the Trackable and Anchor objects as follows (Figure 5):

Trackable: a real-world object that can be tracked by the XR runtime. Each trackable provides a
local reference space, also known as a trackable space, in which an anchor can be expressed.

Anchor: a virtual element for which its position, orientation, scale and other properties are
expressed in the trackable space defined by the trackable. A virtual asset’s position, orientation,
scale and other properties are expressed in relation to an anchor.

Figure 5. Trackable and Anchor for AR

In this AR use case, both the SD and the immersive audio graph may define a Trackable to insert the
virtual car into the user’s real environment.

Note 2: The immersive audio group uses a single Anchor object for the AR anchoring of the scene.
This Anchor object corresponds to a Trackable object of an MPEG Scene Description. In other
words, the transformation matrix between the Trackable and the Anchor objects (TRS#1 in Figure 5

28

) is always the Identity matrix in the immersive audio graph.

Figure 6 illustrates the AR anchoring of the SD and immersive audio graphs representing the virtual
car using a 2D marker by assuming that a common shared Trackable is defined in both the SD and
immersive audio graphs.

Note 3: The root nodes of the car for the two graphs need to have identical initial transformation
matrices to ensure a consistent spatial positioning with respect to the Trackable.

Figure 6. SD and immersive audio graph representations of a virtual car with AR anchoring using a 2D
marker

The pose of the Trackable is retrieved from the XR Runtime API of the device (e.g. Khronos
OpenXR).

The XR Runtime needs to be configurated through the XR Runtime API at the beginning of the AR
session to be able to detect and track the Trackable at runtime.

It is assumed that the Presentation Engine related to the SD graph configures the XR Runtime. An
approach would be that the poses of the Trackables are provided to the immersive audio renderer
by the Presentation Engine through the render control API to ensure the spatial consistency
between the two graphs.

4.1.2. Approach proposal for the spatial synchronization

This section proposes an approach to address the following issues for ensuring a spatial
synchronization between the SD and the immersive audio graphs:

• the knowledge of the transformation matrix between the global XR Space B and B’,

• the identification of which initial parameters to be provided to the immersive audio renderer
through the render control API at the configuration step,

• the identification of which parameters to be provided to the immersive audio renderer through
the render control API to maintain the spatial synchronization during the VR experience.

For the AR case, it is assumed that the Presentation Engine related to the SD graph configures the
XR Runtime. Then, the poses of the Trackables are provided to the immersive audio renderer by the
Presentation Engine through the render control API.

4.1.2.1. Determination the transformation matrix between the global XR Space of each graph

This spatial transformation corresponds to the matrix PB’
B which transforms the input 3D

coordinates expressed in the global XR Space B of the SD graph to 3D coordinates expressed in the
global Space B’ of the immersive audio graph (1):

29

(x’,y’,z’)B’ = PB’
B (x,y,z)B (1)

The proposed approach uses the node mappings between the two graphs to obtain a common XR
Space from which the calculation of this matrix PB’

B can be done.

Figure 7 illustrates this matrix calculation process with:

• The node ref of the SD graph used as the node mapping of reference, defining a local XR Space
Bref, and a mapping transform matrix PBref

Bref’ (i.e., the transform parameter of the node mapping
glTF extension of [1])

• The node ref’ of the immersive audio graph referenced by the referenceId parameter of the
node mapping glTF extension of [1]

Figure 7. Transformation matrix determination using a node mapping

For any point P:

(x,y,z)B = PB
Bref’ (xref’,yref’,zref’)Bref’ = PB

Bref PBref
Bref’ (xref’,yref’,zref’)Bref’ (2)

(x’,y’,z’)B’ = PB’
Bref’ (xref’,yref’,zref’)Bref’ (3)

Then, with (2) and (3):

(x’,y’,z’)B’ = PB’
Bref’[PBref^Bref’^\]^-1^ [PB^Bref^\]^-1^ (x,y,z)B (4)

With (1) and (4):

PB’
B =PB’

Bref’[PBref^Bref’^\]^-1^[PB^Bref^\]^-1^ (5)

For a sake of clarity, the matrix product [PBref^Bref’^\]^-1^ [PB^Bref^\]^-1^ may be called alignment
matrix Palign

Palign = [PBref^Bref’^\]^-1^ [PB^Bref^\]^-1^ (6)

And finally, with (5) and (6):

PB’
B = PB’

Bref’ Palign (7)

In formula (7), it has to be noted that:

• The Presentation Engine does not know the matrix PB’
Bref’

• The immersive audio renderer does not know the alignment matrix Palign and which node ref’ of
the immersive audio graph has been used for the calculation of the transformation matrix PB’

B

30

4.1.2.2. Parameters to be provided to the immersive audio renderer during the configuration
step

The following parameters need to be provided to the immersive audio renderer during the
configuration step:

• The alignment matrix Palign,

• The unique identifier (i.e., the referenceId of the node mapping glTF extension of [1]) of the
node of the immersive audio graph used for the calculation of the transformation matrix PB’

B

By receiving the alignment matrix Palign and the referenceId of the node ref’, the immersive audio
renderer can calculate and store the transformation matrix PB’

B using the formula (7).

Then, when receiving the initial poses of the mapped nodes and the Trackables expressed in the
global XR Space B of the SD graph, the immersive audio renderer can convert these poses to the
global XR Space B’ of the immersive audio graph by using the formula (1).

4.1.2.3. Parameters to be provided to the immersive audio renderer to maintain the spatial
synchronization

The spatial synchronization between the two graphs is maintained by providing the current poses
of the mapped nodes and the Trackables expressed in the global XR Space B of the SD graph. Then,
the immersive audio renderer can convert these poses to the global XR Space B’ of the immersive
audio graph by using the formula (1).

4.1.3. Conclusion

We propose to discuss on the content of the sections 2 and 3 with the immersive audio experts. If
the proposed approach is agreeable, we propose to add the content of sections 3 to the TuC for
further investigations.

4.1.4. References

[1] MPEG-I WG3 m66705, generic API for Presentation Engine, January 2024

4.2. Immersive audio support in Scene Description
Source: m70205

4.2.1. Introduction

A generic Render Control API and a related MPEG_node_mapping glTF extension at node level is
defined in the section 3.2 of the Technology under Consideration document [1] from the
contribution m66705 [2].

Additional contributions on the spatial synchronization between graphs [3] and on the support of
AR anchors [4] have been provided during past MPEG meetings.

Based on the assumptions provided in section 2, this contribution proposes an update of the generic

31

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/764

Render Control API and related MPEG_node_mapping glTF extension at node level for the amd1
document of the second edition (section 3). The modifications with respect to the TuC version are
highlighted in yellow.

4.2.2. Main assumptions

Based on the architecture of Figure 1 for the processing of the MPEG-I immersive audio and Scene
Description data, the main assumptions are the following:

• The transform parameter of the MPEG_node_mapping glTF extension corresponds to the 4x4
TRS matrix which transforms the 3D coordinates of the node having this glTF extension
expressed in the glTF2.0 scene coordinate system to the 3D coordinates of the node of the
external renderer graph referenced by the referenceId identifier expressed in the external
renderer scene coordinate system

◦ In that case, there is no need of further data (e.g., bounding boxes as defined in the TuC
version) to ensure a spatial alignment between the graphs as the 4x4 TRS matrix of the
transform parameter encompasses all the required spatial transformations.

• There is no need of exposing dedicated data on the AR anchors/Trackables (e.g., a list of tracked
AR anchors as defined in the TuC version) to the external renderer

◦ The information on AR anchors/Trackables are duplicated in the immersive audio bitstream
and in the Scene Description file.

▪ This information is used by the Presentation Engine to configure the XR Runtime to
detect and track the AR Anchors/Trackables

◦ If a node having the MPEG_node_mapping glTF extension is a child of an AR
Anchor/Trackable, this node and the node of the external renderer graph referenced by the
referenceId identifier are positioned in a common AR Anchor/Trackable XR Space based on
the spatial transformations from their respective node graph hierarchy

▪ In that case, the transform parameter of the MPEG_node_mapping glTF extension
corresponds to the 4x4 TRS matrix which transforms the 3D coordinates of the node
having this glTF extension expressed in the common AR Anchor/Trackable coordinate
system to the 3D coordinates of the node of the external renderer graph referenced by
the referenceId identifier expressed in the common AR Anchor/Trackable coordinate
system

• For a sake of processing efficiency, additional parameters may be added to the
MPEG_node_mapping glTF extension for defining the synchronization occurrence for that node.
The objects of the scene may require different synchronization requirements. For example,

◦ A wall having acoustic properties remains static and does not require further spatial
synchronization at runtime

◦ A draggable object (e.g. a door) may only require a spatial synchronization based on an
event, i.e., a trigger activation such as collision, user input

◦ An animated object (e.g., a car) may require periodic, rendering frame-based spatial
synchronization

◦ The control (e.g., play, pause, stop) of an audio source (e.g., an alarm) may depend on a
logical combination of events such as a logical AND combination between visibility and

32

proximity triggers

Baseline architecture for the processing of the MPEG-I immersive audio and Scene Description data

4.2.3. Support of immersive audio in Scene Description

4.2.3.1. Generic Render Control API

The Generic Render Control API is an abstract API that is offered by external renderers to enable
applications, such as Presentation Engines, to control the rendering process by aligning and
synchronizing their rendering state to that of the Presentation Engine. This API is used by the
Presentation Engine to configure and update the status of the external renderer.

The following table describes the functionality provided by the Render Lock-in API:

Method Description

init() Initializes the external renderer by providing the related media source
information and their corresponding buffers. It also establishes a session
between the Presentation Engine and the external renderer.

The inputs to this method call should be:

• A media source object that contains a handler to the buffer(s), where the
source media will be made available by the MAF. A description of the
media source and the contents of each buffer shall also be provided.

33

Method Description

configure() Configures the external renderer to establish an initial alignment and
synchronization between the Presentation Engine and the external
renderer.

The parameters to this method may include:

• A mapping between the initial timestamp of the common Presentation
Engine timeline and that of the media associated with the external
renderer. It also provides information about the clock rate of the
Presentation Engine.

• A list of mapped nodes in the source media rendered by the external
renderer. This list shall at least contain one object with a mapping to the
main camera of the main scene description. For audio renderers, this
may be the audio listener. The information is provided by the [line-
through]#the MPEG_node_mapping extension in the scene description
document. It should also provide the initial [.mark]#pose [line-
through]#position and transformation of the mapped nodes after
applying the [.mark][line-through]transformations associated with
these# 4x4 matrix of the transform parameter provided in the node
mappings.

• [line-through]#A description of the scene bounding box using the glTF
2.0 spatial coordinate system. The external renderer uses this
information to establish a spatial alignment between the scene
coordinate system and the coordinate system that is used by the source
media. The external renderer may align the bounding box of the scene to
that of its media stream, which establishes the transformation that needs
to be applied to all spatial coordinates exchanged over the API, in order
to determine the corresponding coordinates in the coordinate system of
the media stream.#

• [line-through]#A list of tracked AR anchors that may be used by the
external renderer.#

The external renderer may then subscribe for updates to specific aligned
nodes or it may specifically ask for current state for these nodes, using the
referenceId.

[line-through]#NOTE: all exchanges over this API are based on the scene
(glTF2.0) coordinate system. It is the responsibility of the external renderer
to convert into their own coordinate system. The Presentation Engine does
not consider any other coordinate systems other than the one established by
the scene description.#

34

Method Description

start()

pause()

resume()

stop()

Allows the Presentation Engine to control the playback of selected media
sources associated with the external renderer for interactivity purposes.

update() Used by the Presentation Engine to update node positions and orientations
for which there is a mapping with the external renderer. Updates may result
from received scene updates, user interactions, animations, physics
simulations, or any other events. The Presentation Engine uses this update()
method when one or more mapped nodes need to be spatially synchronized,
depending on their synchronizationOccurrence and
synchronizationOccurenceCombination parameters provided in their
MPEG_node_mapping extension.

The parameters passed to this method are an array of objects consisting of:

• The referenceId of the node to which this update applies

• [line-through]#The transform matrix that sets the current pose of the
tracked object after applying the transform operation as described by
the corresponding MPEG_node_mapping. Any further adjustments need
to be applied by the external renderer to align with its internal
coordinate system.#

• The current pose of the mapped node after applying the 4x4 matrix of
the transform parameter provided in the corresponding
MPEG_node_mapping

updateGraph() The Presentation Engine uses the updateGraph function to add, update, or
remove a set of nodes to the internal representation of the scene that is
maintained by the external renderer. Only nodes that have a mapping with
the external renderer can be passed through this method.

The parameters to this method are an array of objects that include:

• The graph operation: ADD, REMOVE, UPDATE

• For ADD: the referenceId and the initialization information for the
associated media data to the object that is to be added.

• For REMOVE: the referenceId of the object to be removed.

• For UPDATE: the referenceId of the object to be updated, as well as a
dictionary of attributes and their update values.

35

Method Description

registerCallback() The Presentation Engine may provide a callback function to the external
renderer to allow it to query the status of certain parameters at any time.
This may for example include asking for the current user pose.

The Presentation Engine shall register a callback function whenever
possible.

The following is a description for the API in IDL (ISO/IEC 19516):

interface GenericRenderControl \{
 void init();
 void configure();
void start();
void pause();
void resume();
void stop();
update();
void updateGraph();
 void registerCallback();
};

4.2.4. References

[1] Technology under Consideration for ISO/IEC 23090-14, MDS24160_WG03_N01314

[2] Generic API for Presentation Engine, Qualcomm, m66705, Online meeting of January 2024

[3] On spatial synchronization between graphs, InterDigital, m67011, Rennes meeting of April 2024

[4] AR Anchor and LSDF generation in MPEG-I immersive audio, Nokia, m68566, Sapporo meeting
of July 2024

36

Chapter 5. Interactivity framework

5.1. On event-based scene update
Source: m61812

5.1.1. General

In the 23090-14 DIS document, a scene update mechanism is proposed, with predefined timed
updates: A special track in a media content (for instance an ISOBMFF file), provides timed samples
that contain patch (i.e., JSON patch) to be apply to the original scene description file.

Figure 8. n/a

This mechanism handles pre-defined scene evolution but does not allow describing event-based
update, following for instance a user action or any event that may occurred amongst the scene
objects at any time. In the MPEG-I Scene Description output document on scene update [ISO/IEC JTC
1/SC 29/WG 3 N0315], a potential solution is presented for event-based scene updates : while a
predefined timed scene update is in progress, an event may occur that updates the scene
description. Several scenarios are then proposed: apply a patch and switch to a new timed samples
track or apply a patch and skip one or more versions in the same track.

Figure 9. n/a

This mechanism is still strongly related to pre-defined scene evolutions and does not specify how
the event that triggers the update is described in the scene description document.

Furthermore, it does not handle the case where the same event that creates a new node may be
fired multiple times, like illustrated in the following diagram: A glTF scene contains a description of
an event-based update mechanism with the same patch applied each time an event is fired. Some
elements of the glTF scene are modified (adding, changing or removing nodes, meshes parameters)
but not the event-based update description.

37

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/445
https://datatracker.ietf.org/doc/html/rfc6902/

Figure 10. Event-based update diagram

5.1.2. A use case for event based updates

This update diagram is illustrated in the IDCC demo, presented during the last MPEG meeting in
Mainz:

Figure 11. n/a

Figure 12. n/a

The demo presents a game application. An initial scene is first displayed, containing a plane
surface, a TV screen displaying a video content and a vertical surface displaying a pattern. The user
can add a new cube in the scene by touching the screen, in order to build a cubes stack that
matches the displayed pattern. Each time a match occurs, a new scene is loaded with a new pattern
and a new video. The game may be multiplayer with the same scene shared between all the
connected clients. The scene is synchronized each time an update is performed in one client. A

38

game server handles the scene synchronization each time an update is performed by a client.

The creation of the cube and the loading of a new scene is currently implemented using proprietary
solution, but it could be possible to build a mechanism in line with the MPEG-SD dynamic scene
framework.

Two kinds of updates are triggered during the game:

1. During a game phase, each time the user touches the screen to create a cube in front of the
pattern, a same scene update/patch is applied. The difference is the position of the user’s finger
that gives the position where the cube is created and from which it falls. Using the current scene
update mechanism, with JSON patch, the creation of a new cube would be performed with 2
patch operations:

◦ An “add” operation, that adds a new node in the glTF node array, for instance with a path
equal to “/nodes/-“, i.e. a new node created at the end of the array. A new node created in the
middle of the nodes array (i.e., with a path equal to “/nodes/2”) would leave the scene in an
erroneous status and would need extra patch operations to fix it. We would face other issues
if the new “cube” nodes must be created as children of another “cubesStack” node: We
would not know in advance the index of the new node since it depends on the number of
updates that have already been triggered.

◦ A “place” operation that does not exist in the JSON patch specifications. We could use a
“replace” operation to set the “translation” or/and “rotation” elements of the new node but:

▪ Same as above, we do not know in advance the index of the new node!

▪ The value to be applied must be retrieved from user’s finger position on the screen! And
there is no way to pass this value as an input to the “replace” operation.

2. When the cubes stack matches the pattern, a new scene is loaded with a new pattern:

◦ It could be a JSON patch, removing the cube nodes and replacing the pattern with a new
one. As above, we do not know the indexes of all the cube nodes and these indexes are
needed to remove the nodes. If the nodes have been created as children of a unique parent
node, we could just empty the children array of this node. The cube nodes description would
remain in the description file.

◦ It could be a complete update and a new glTF file is used.

5.1.3. JSON patch limitations

A JSON patch is not a “glTF patch” and does not consider all the characteristics of the JSON tree in a
glTF scene description file and particularly the interdependence between elements of different
branches of the glTF tree (a node referencing a mesh that references a material, or a node
referencing one or more child nodes). It is fine if you know in advance the scene description you
want to update and the resulting scene description: The JSON patch can be generated by comparing
the 2 JSON description files.

For repetitive event-based updates as described in Section 5.1.2, we don’t know the resulting scene
and care should be taken when writing the JSON patch. Furthermore, the application, that applies
the patch, may need to perform extra operations to complete the update:

39

• check the consistency of the resulting glTF scene,

• get the index of an array item created with the “-“ JSON patch alias,

• perform extra glTF modifications not handled by JSON patches (set newly created nodes as child
of another node, set JSON element to a value only determined at run-time…).

5.1.4. Semantics for event-based update

A new semantic is needed to describe event-based scene update: A semantic that would address the
use case (related to pre-defined timed scene updates) as well as the new one introduced in Section
5.1.2.

An approach would be to keep using the JSON patch mechanism, which is already used for the pre-
defined timed scene updates. As explained above, the definition of extra parameters would then be
required.

Furthermore, the description of the event and its relationship with the scene update could be
described with the interactivity framework specified in [ISO/IEC JTC 1/SC 29/WG 3 N0725]. It defines
a set of action types that can be executed following a trigger activation. As a reminder, the table
above gives the action types that are already specified:

Table 6. Type of action

Action type Description

“ACTION_ACTIVATE” Set activation status of a node

“ACTION_TRANSFORM” Set transform to a node

“ACTION_BLOCK” Block the transform of a node

“ACTION_ANIMATION” Select and control an animation

“ACTION_MEDIA” Select and control a media

“ACTION_MANIPULATE” Select a manipulate action

“ACTION_SET_MATERIAL” Set new material to nodes

“ACTION_SET_HAPTIC” Get haptic feedbacks on a set of nodes

An event-based scene update may be described in a glTF scene description file, using the
interactivity extensions specified in [ISO/IEC JTC 1/SC 29/WG 3 N0725]: A trigger element may
described the event (for instance, a “TRIGGER_USER_INPUT” trigger, as defined in [ISO/IEC JTC 1/SC
29/WG 3 N0725]), and an action element (of a new type, to be defined) may described the update
information (a patch to be applied (an array of JSON patch operations) and other parameters used
by the application to complete this update). Here is a list of such parameters that may be defined:

• Parameters to place one or more nodes in a position not known in advance. For instance, it may
include a position information and a list of nodes. The position parameter may be related to a
user input, or a user pose and may use the OpenXR interaction profile path semantic. Each node
to position may be identified by one of the patch operations that created or modified it.

• Parameters identifying one or more nodes to be used as parent of one or more newly created
nodes. For instance, a list of parent nodes and a list of child nodes. Same as above, each child

40

https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html#semantic-path-interaction-profiles

node may be identified by one of the patch operations that created or modified it.

• Any other parameters that may be needed for other use cases: flag to share or not a local update
with other connected users sharing the same scene, strategy in case the patch fails or gives an
inconsistent glTF tree (rollback, fix…), …

5.2. Mapping interactivity to Khronos extension
Source: m72365

5.2.1. Introduction

In this contribution, we present a detailed mapping between the MPEG_interactivity extension
(defined in ISO/IEC 23090-14) and the KHR_interactivity extension (the Khronos Group’s glTF 2.0
interactivity extension). We begin with an overview of each extension, including their structure
and purpose. Next, we define a one-to-one mapping of core interactivity constructs – such as
triggers, actions, and variables in MPEG_interactivity – to their equivalents in KHR_interactivity
(event nodes, flow/logic nodes, variables, operations, etc.). We then discuss the processing rules for
each system, explaining how events are triggered, conditions evaluated, and actions executed in
MPEG’s model versus Khronos’s behavior graph model. Finally, we illustrate the mapping with a
fully detailed example scenario: a user interacts with a “remote control” object in a 3D scene to turn
on a TV and start video playback. The scenario is described narratively and shown in both
MPEG_interactivity JSON syntax and KHR_interactivity JSON (behavior graph) syntax, accompanied
by diagrams of the event flow. Throughout the report, we use clear section headings and concise
explanations for readability.

5.2.2. Overview of both Interactivity Frameworks

5.2.2.1. 2.1 Overview of MPEG_interactivity

The MPEG_interactivity extension is part of the MPEG-I Scene Description standard and is designed
to integrate interactive behavior into 3D scenes (built on glTF 2.0). Interactivity in MPEG-I is defined
at two levels: a scene-level extension (MPEG_scene_interactivity) and a node-level extension
(MPEG_node_interactivity). The scene-level extension contains the global definitions of triggers,
actions, and behaviors that apply to the scene. The node-level extension can complement these by
providing additional data or specialized parameters for specific nodes (for example, physics or
collision properties for that node). In essence, MPEG_interactivity allows authors to define
interactive behaviors that link user or environment events to changes in the scene, all within the
MPEG scene description.

Triggers and Actions: In MPEG’s model, a behavior is the fundamental unit of interactivity, defined
as a pairing of one or more triggers with one or more actions. Triggers represent events or
conditions that can occur – for example, a collision between objects, an object coming within a
certain distance of another (proximity), a user input event, or an object’s visibility state. These
triggers can originate from user interactions (e.g. controller input or gestures), temporal/spatial
conditions, or system events. Actions represent the responses that occur when triggers are
activated – for example, enabling or disabling an object, transforming or moving an object, playing
an animation or media, changing a material, applying haptic feedback, etc. MPEG_interactivity

41

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/843

defines a fixed set of trigger types and action types. Below is a summary of the main types:

• Trigger types:

◦ TRIGGER_COLLISION: Fires when a collision is detected between specified nodes.

◦ TRIGGER_PROXIMITY: Fires when one node comes within a defined distance of another.

◦ TRIGGER_USER_INPUT: Fires on a user input or gesture (e.g. a button press or hand motion).

◦ TRIGGER_VISIBILITY: Fires when a node becomes visible or hidden (e.g. entering/exiting the
camera frustum).

• Action types:

◦ ACTION_ACTIVATE: Enable or disable a node’s active state in the scene.

◦ ACTION_TRANSFORM: Apply a specified transformation to target node(s).

◦ ACTION_BLOCK: Lock or freeze a node’s transform.

◦ ACTION_ANIMATION: Control an animation, e.g. play, pause, resume, stop a glTF animation
by index.

◦ ACTION_MEDIA: Control a media asset, e.g. video or audio playback of media defined in an
MPEG_media extension).

◦ ACTION_MANIPULATE: Initiate a user manipulation of a node, e.g. grabbing an object with a
controller.

◦ ACTION_SET_MATERIAL: Swap the material of target node(s), e.g. to change an object’s
appearance.

◦ ACTION_HAPTIC: Trigger haptic feedback via haptic devices, with parameters for the type of
feedback.

◦ ACTION_SET_AVATAR: Invoke an avatar-specific action.

A behavior in MPEG_interactivity ties together one or more triggers with one or more actions, along
with some logic controls. The behavior definition can specify a logical combination of triggers
(using AND, OR, NOT operators) that must be satisfied to activate the behavior. For example, a
behavior might be set to trigger only when Trigger A AND Trigger B are true, or Trigger C OR
Trigger D is true, etc. This logical expression is given as a string (e.g. "#1 & ~~#2 | (#3 & #4)" where
numbers refer to trigger indices). The behavior also defines a triggersActivationControl, which
indicates when the trigger condition is considered activated. This allows behaviors to fire one-time
or repeatedly, and to detect both the “enter” and “exit” of a condition (e.g. when a user enters a
zone vs leaves it). Additionally, a behavior can specify whether multiple actions execute
sequentially or in parallel, an optional interruptAction (an action to execute if an ongoing behavior
is interrupted or removed), and a priority value to arbitrate if multiple behaviors conflict.

In summary, MPEG’s interactivity model is a rule-based system, where behaviors are essentially
rules of the form “if these trigger conditions are satisfied, then perform these actions.”

5.2.2.2. Overview of Khronos Interactivity

The Khronos KHR_interactivity extension for glTF 2.0 introduces a behavior graph system to
incorporate interactivity into glTF assets. Instead of pre-defined trigger-action lists,

42

KHR_interactivity uses a node graph (behavior graph) model similar to Unreal Engine’s Blueprints
or Unity’s visual scripting. The extension allows content creators to define logic within the glTF file
itself, so that the asset can respond to events in a consistent way across different viewers. The
primary motivation is to make interactive 3D assets portable and self-contained. The focus is on
safety and sandboxing; by using a limited set of graph nodes and not arbitrary scripting, the
behaviors remain predictable and secure across platforms.

A KHR_interactivity behavior graph is essentially a directed acyclic graph (DAG) of nodes connected
by links (edges) that pass execution flow or data. Each node performs a simple function (such as
detecting an event, evaluating a condition, or performing an action), and nodes are connected such
that an event triggers a flow through the graph, causing actions to happen. Nodes in the graph fall
into one of several categories:

• Event Nodes: these are entry points that listen for certain events and start the execution flow
when the event occurs. Examples of events include lifecycle events (like “On Start” when the
scene/asset loads, or “On Tick” each frame) and custom or user-defined events. Custom events
are essentially named events that can be triggered by external application.

• Action/Operation Nodes: Nodes that perform an action or change in the scene. These correspond
to things like starting an animation, changing a material or variant, transforming a node,
playing a sound or video, etc. They typically consume input values and produce an effect. Often,
these nodes will interface with other glTF extensions or properties (e.g., a node to play an
animation will reference a glTF animation, etc.).

• Logic/Flow Control Nodes: Nodes that direct the flow of execution or make decisions. Examples
include Branch (an if-else node that routes the flow based on a boolean condition), loops, and
sequence or delay nodes to chain or defer actions. These nodes don’t directly affect the scene;
they control which actions happen and when.

• Variable/State Nodes: Nodes that store or manipulate state. The extension introduces the
concept of variables that can hold values during the execution of the graph. Variable nodes
might include setting a variable, reading a variable, or modifying it (e.g., incrementing a
counter). These are useful for keeping track of state across events. There are also query nodes
which can retrieve information from the glTF scene or runtime.

• Math/Conversion Nodes: Basic arithmetic or logic comparison nodes (e.g., add, subtract, boolean
AND/OR, compare values) and type converters. These help build conditions and compute values
to use in decisions or actions.

All nodes have defined input sockets and output sockets. There are typically two kinds of
connections: flow connections that pass along execution order and data connections that pass
values. The use of flow sockets means the graph’s execution is explicit: an event node emits a flow,
which travels through connected nodes in sequence. This is how behaviors are executed. In other
words, when an event occurs, it triggers the next node via a flow link, and so on, forming a chain of
execution.

KHR_interactivity by itself defines the graph framework (nodes, events, variables), but it works in
concert with other glTF mechanisms to actually affect the 3D scene. For example, to change the
state of an object, an operation node might use the KHR_animation_pointer extension to target a
specific property of a glTF node (like its translation, or a custom “visibility” flag). Likewise, an
action node that plays a video might rely on a video texture extension or media extension to handle

43

the media resource. This modular approach means KHR_interactivity can be extended by
introducing new node types via additional extensions. The initial set of node types covers common
needs (UI events, animation control, variant switching, simple logic, etc.), and more specialized
interactions (like physics or complex UI) may involve additional glTF extensions.

5.2.2.3. Mapping MPEG_node/scene_interactivity to KHR_interactivity

Despite differences in approach (rule-based vs node-graph), MPEG_interactivity and
KHR_interactivity address similar needs and concepts. Below, we map the key constructs one-to-one
between MPEG’s design and Khronos’s design:

1. Triggers (MPEG) ⇔ Event Nodes (KHR): A trigger in MPEG corresponds to an event that can start
a behavior. In KHR_interactivity this is represented by an Event node in the behavior graph. For
example:

◦ MPEG TRIGGER_USER_INPUT maps to a Custom Event node or a specific input event node in
KHR. Khronos does not hard-code user input events in the initial spec; instead, one would
use a Custom Event node that is fired by the viewer when the user performs that input. In
practice, this means an MPEG user input trigger like “left controller trigger pulled” would
translate to a custom event named "left_trigger_pull" in the glTF behavior graph, which the
viewer knows to send on that input.

◦ MPEG TRIGGER_COLLISION has no direct built-in equivalent in the base KHR_interactivity
since physics/collision aren’t covered in the initial draft. The analogous concept would be an
event triggered by a physics engine. This could be achieved with an extension: for instance,
a KHR_physics extension might generate a custom event when a collision occurs.

◦ MPEG TRIGGER_PROXIMITY similarly maps to a custom event from an engine when an
object enters/exits a zone. In essence, a proximity trigger can be implemented in
KHR_interactivity using the building blocks of event + logic nodes, since there isn’t a single
“OnProximity” node by default.

◦ MPEG TRIGGER_VISIBILITY would map to an event or condition related to the camera view.
Khronos could handle this by using an On Tick event and a query node to check if the object
is in the camera frustum, combined with a branch node. Alternatively, a custom event could
be fired by the viewer when an object enters/exits view. This again shows that MPEG
provides a specific trigger type, whereas KHR_interactivity might rely on general
mechanisms or future extensions to achieve the same.

◦ Lifecycle triggers: Although not explicitly named “triggers” in MPEG_interactivity, one can
consider the scene start as an implicit trigger. In KHR_interactivity, there is a built-in
OnStart event node, which fires when the asset is loaded, and an OnTick which have no
direct MPEG analog, since MPEG’s triggers are more content-centric.

2. Actions (MPEG) ⇔ Action/Operation Nodes (KHR): An MPEG action corresponds to a node in the
behavior graph that performs the equivalent operation. Many MPEG action types have clear
counterparts or ways to achieve them in KHR_interactivity:

◦ ACTION_ACTIVATE: This maps to toggling a node’s active state or visibility. glTF core doesn’t
have an “enabled” flag, but a parallel extension (KHR_node_visibility) is in development to
allow hiding/showing nodes. In a KHR_interactivity graph, one could use an operation node
that sets a node’s visibility to true or false via the KHR_node_visibility property.

44

◦ ACTION_TRANSFORM: This corresponds to directly manipulating a node’s
translation/rotation/scale. In KHR_interactivity, this would likely be done via an Animation
or Pointer node, e.g. using KHR_animation_pointer to target a node’s transform and setting
it. The graph might use a node that takes a matrix or vector value and applies it to the target
node.

◦ ACTION_BLOCK: In MPEG, this prevents a node from moving. There isn’t a direct single node
in KHR_interactivity for this, but it could be interpreted as setting certain physics or
interaction constraints. If we consider a physics extension, an equivalent would be to
change the body to static or disable user interaction on that node.

◦ ACTION_ANIMATION: This maps well to KHR_interactivity’s abilities. A likely
implementation is an Animation Control node that can play/pause/stop a glTF animation.

◦ ACTION_MEDIA: Khronos is working on incorporating media (video & audio) into glTF.
Using an extension like MPEG_texture_video and MPEG_media for video textures, the
behavior graph would control media similarly to animations. A KHR action node for media
might take a media/texture ID and a play/pause command.

◦ ACTION_MANIPULATE: This is quite interactive and likely relies on continuous input. In
KHR_interactivity, continuous interactions, like dragging an object with the mouse or a
controller, might be handled outside the behavior graph logic or by a combination of event +
continuous update.

◦ ACTION_SET_MATERIAL: glTF has a dedicated system for material variants
(KHR_materials_variants). In a KHR_interactivity graph, changing a material can be done by
setting the active variant of an object. For instance, there could be an Action node that sets a
variant index on an object.

◦ ACTION_HAPTIC: Currently, glTF has no haptic feedback features in standard extensions.
This is a specialized case where MPEG defines parameters for haptic devices.
KHR_interactivity doesn’t cover this yet; a future extension or external API would be
needed. One could envision a custom event node that communicates with a haptic device
when triggered. Thus, an MPEG haptic action would correspond to triggering some external
haptic system in the Presentation Engine.

◦ ACTION_SET_AVATAR: Similarly, glTF doesn’t have built-in avatar systems. MPEG’s avatar
actions, like toggling an avatar’s microphone or performing an animation on an avatar,
would require an external avatar system..

In general, MPEG’s action types map onto either specific KHR_interactivity nodes or combinations
of nodes. Khronos’s design tends to break down effects into simpler pieces, whereas MPEG
sometimes has a single action that encapsulates a multi-step process, like manipulate or haptic,
which involve continuous feedback or external devices. The simpler actions, like activate,
transform, play animation, set material, have clear counterparts in the graph model.

• Behavior (MPEG) ⇔ Behavior Graph / Event Flow (KHR): An MPEG behavior object as a whole
corresponds to an event flow in the KHR_interactivity graph. In other words, a single MPEG
behavior can be thought of as a little program “if [trigger conditions] then [do actions].” In a
node graph, this would be represented by wiring the event nodes for those triggers through
logic nodes into the sequence of action nodes. For a simple behavior with one trigger and one
action, the mapping is straightforward: one Event node connected to one Action node. For a

45

more complex behavior, i.e. multiple triggers and multiple actions with logic, the contents of the
MPEG behavior need to be expanded into multiple graph nodes, e.g., several Event nodes
feeding into a Logic/AND node to replicate a combined condition, then that logic node feeding
into multiple Action nodes. The triggersCombinationControl string in MPEG is effectively
replaced by a network of boolean logic nodes in KHR_interactivity, AND, OR, NOT nodes linking
the outputs of event nodes, which then feed into a branch. Likewise, the
triggersActivationControl modes, such as FIRST_ENTER, EACH_ENTER, ON, etc., do not exist
explicitly in KHR’s design. Instead, achieving the equivalent behavior relies on how the graph is
constructed:

◦ “FIRST_ENTER” could be mimicked by using a variable as a flag to remember it fired, or by
using an Event node that only triggers once.

◦ “EACH_ENTER” is effectively how event nodes naturally behave if you use instantaneous
events. A combination of conditions would need edge detection logic, which could be done
with variables.

◦ “ON” could be achieved by using a continuous event like OnTick and inside it, use an IF
(Branch) to continuously do something while a condition holds..

◦ “FIRST_EXIT/EACH_EXIT” similarly would require tracking state and using logic in the
graph, like using a combination of OnTick + a stored boolean to detect the transition.

• Variables and State: MPEG_interactivity doesn’t define general-purpose variables for behaviors;
it relies on triggers and some internal state like whether an action is ongoing. Conditions are
directly encoded as triggers or combinations thereof, rather than allowing arbitrary state
checks. In contrast, KHR_interactivity provides variables as a first-class concept. This means
some logic that would require a custom trigger in MPEG can be done by checking a variable in
KHR.

• Processing Model Differences: In MPEG, behaviors are evaluated by the engine each frame: all
triggers are polled/evaluated, and when conditions match, the associated actions are launched.
It’s a data-driven approach where the scene description lists behaviors and the engine
continuously checks them. In KHR_interactivity, the behavior graph sits idle until an event node
is invoked; then it propagates execution along the linked nodes. There isn’t a concept of
continuously checking a condition unless you explicitly set that up with an OnTick event. So
effectively, MPEG’s triggers that are continuously monitored map to either event nodes that are
inherently continuous (OnTick) or to having multiple event nodes fire as needed. This means
some things that are automatic in MPEG (like collision detection triggering an action) will, in a
glTF context, depend on the viewer providing those events or the graph explicitly querying.

In summary, MPEG_interactivity and KHR_interactivity cover the same functionality but through
different paradigms. To map MPEG to Khronos: triggers correspond to events, possibly requiring
additional logic nodes in Khronos’s interactivity extension. Variables and custom logic in Khronos
can be used to achieve complex conditions of MPEG’s interactivity.

5.2.2.4. Processing and Execution Rules

MPEG defines a clear processing model for how interactive behaviors are handled at runtime.
When the scene is loaded, the Presentation Engine (the runtime) will parse the glTF and set up all
the behaviors described in the MPEG_scene_interactivity extension. Each behavior knows its
triggers and actions (and any node-level parameters from MPEG_node_interactivity). At runtime

46

(typically each frame or each time the scene updates), the engine iterates through all defined
behaviors and evaluates them as follows:

1. It checks the status of each trigger in that behavior – meaning it evaluates whether each trigger
condition is currently active or has occurred (e.g., is collision X happening? is the button
pressed? is object Y visible?). There is an underlying procedure or algorithm for each trigger
type to determine its boolean state (the spec even provides a flowchart for trigger activation in
the standard).

2. It then evaluates the logical combination of those triggers as specified by the behavior (applying
the AND/OR/NOT from the triggersCombinationControl). This results in an overall true/false
evaluation for the condition of the behavior in the current frame.

3. The engine then checks this result against the triggersActivationControl setting for the behavior.
For example, if triggersActivationControl is “EACH_ENTER,” the behavior should fire at the
moment the condition goes from false to true. So the engine might compare the current
condition state with the previous frame’s state to decide if this is a newly true event. If it’s “ON,”
it would consider the behavior active continuously while the condition is true (possibly
triggering actions continuously or at least keeping them active). The specifics are defined in the
standard’s Table 12 (as listed in the extension): FIRST_ENTER triggers once on true,
EACH_ENTER triggers every time it becomes true, etc. If the condition meets the criteria (e.g., it
just became true for a FIRST_ENTER, or it is true for ON), then

4. the engine launches the actions associated with the behavior. Launching actions means it
executes each action in either sequential or parallel order as specified. Sequential actions might
be executed over multiple frames if they have delays, whereas parallel actions are initiated
together (for instance, starting an animation and a sound at the same time). Some actions (like
play animation or play media) are instantaneous triggers that then proceed over time. The
MPEG model accounts for actions that continue over time (e.g., an animation playing) by
considering a behavior “ongoing” until those complete. If a scene update removes an ongoing
behavior, the engine will execute the defined interruptAction (if any) to gracefully stop the
behavior. Also, MPEG specifies that if multiple behaviors try to affect the same node
simultaneously, the one with higher priority wins and the other is suppressed. This ensures
determinism when two rules conflict (for example, one behavior says “move object up” and
another says “move object down” at the same time – the one with higher priority will take
effect). The entire cycle of checking triggers and updating actions repeats each frame or
whenever the scene state changes. In effect, MPEG_interactivity acts as a continuous rule
evaluator: at any moment, it will respond to the current state of inputs by initiating the
appropriate outputs.

The KHR_interactivity behavior graph has a different execution model more akin to an event-
driven system. Rather than continuously scanning conditions, it waits for events and propagates
changes through the graph. Here’s how it works: When an interactive glTF asset is loaded, the
viewer will initialize the behavior graph. This likely involves creating runtime representations of
all the nodes (events, variables, etc.) and possibly initializing default variable values. Some event
nodes may fire immediately upon load – notably, the OnStart (or equivalent) event node will trigger
as soon as the graph is ready, which can start certain behaviors (e.g., an introductory animation)
without any user input. During runtime, events occur either because of user interaction or as part
of the system (for example, each frame an OnTick event may fire, or a custom event is emitted
when an external condition is met). When an Event node fires, it emits a flow signal that travels

47

along its outgoing connections in the graph. The nodes connected to that event’s output will then
execute in order. Execution in the graph is generally instantaneous in the sense that in a single
frame tick, an event can trigger a whole chain of nodes to run sequentially. Each node, upon
execution, may do something and then pass along flow to the next. For example, if an Event node is
connected to an Action node: as soon as the event happens, the action node executes. If that action
node has a flow output to another node (like another action), it will then trigger that next node, and
so on – all within the same event invocation. There isn’t an external loop checking all nodes;
instead, nodes call one another via these links. This is a reactive execution: something happens
(event), then reactions propagate.

During this propagation, flow control nodes can decide to branch or loop. A Branch (if/else) node
will receive the flow, check a condition (e.g., compare a variable’s value), and then send the flow
down one of its two outputs (true path or false path). This is how conditions are evaluated in
KHR_interactivity – the condition check is just another node in the chain. For looping, the extension
avoids infinite loops by design (no direct cycle in the graph), but a node might have multiple flow
outputs (like a loop node could output back to an earlier part but that’s likely forbidden to keep
acyclic). Instead, repeating behavior is usually achieved by using OnTick events or by an action re-
triggering an event. For instance, a repeating animation loop might be handled by having an
animation node that upon finishing emits a custom event that loops back to start it again (that
“loop” was described in the sofa example using a custom event to repeat). So loops are achieved by
scheduling events rather than actual graph cycles.

5.2.2.5. Example Scenario: Remote Control Triggers TV On (Video Playback)

To illustrate the mapping, consider a scenario in an interactive 3D scene: A user reaches out and
presses a virtual remote control object, which causes a 3D television in the scene to turn on and
start playing a video. We will describe this scenario and then show how it can be implemented
using both MPEG_interactivity and KHR_interactivity, including example JSON syntax and a
diagram of the event flow for each.

The scene consists of a television set and a remote control as separate objects. Initially, the TV is
“off”, perhaps its screen is dark and no video is playing. The remote control is an object the user
can interact with. When the user performs the appropriate input, e.g. clicking on the remote control
object, that interaction is detected by the system. The interactivity logic then triggers two changes:
(1) the TV’s power state turns on, i.e. change its material to a lit screen), and (2) a video begins
playing on the TV’s screen.

This scenario involves one primary event (user presses remote) and two actions (turn on TV, play
video). There could also be a condition, e.g. only do it if the TV was off, but for simplicity we’ll
assume the TV is off and the remote always turns it on.

Below we show how the MPEG_interactivity JSON might look like, and then the equivalent
KHR_interactivity behavior graph JSON.

MPEG_interactivity Implementation

In MPEG_interactivity, we define a trigger for the remote-control input, actions for turning on the
TV and playing the video, and a behavior that links them. We also assume a media is defined in the
MPEG_media extension.

48

The JSON snippet might look like this:

"extensionsUsed": [

 "MPEG_scene_interactivity",

 "MPEG_media"

],

"extensions": {

 "MPEG_media": {

 "media": [

 {

 "uri": "tv_video.mp4",

 "mimeType": "video/mp4"

 }

]

 }

},

"scene": 0,

"scenes": [

 {

 "extensions": {

 "MPEG_scene_interactivity": {

 "triggers": [

 {

 "type": "TRIGGER_USER_INPUT",

 "userInputDescription": "/user/hand/right/input/select/click"

 }

49

],

 "actions": [

 {

 "type": "ACTION_ACTIVATE",

 "activationStatus": "ENABLED",

 "nodes": [1] // assume node 1 = TV

 },

 {

 "type": "ACTION_MEDIA",

 "media": 0, // play media index 0 (tv_video.mp4)

 "mediaControl": "MEDIA_PLAY"

 }

],

 "behaviors": [

 {

 "triggers": [0],

 "actions": [0, 1],

 "triggersCombinationControl": "",

 "triggersActivationControl": "TRIGGER_ACTIVATE_EACH_ENTER",

 "actionsControl": "SEQUENTIAL"

 }

]

 }

 },

 "nodes": [...

 { "name": "RemoteControl", /* remote node index 0 */ },

50

 { "name": "TV", /* TV node index 1, initially off/inactive */ }

 ...]

 }

]

In this example, we use a TRIGGER_USER_INPUT for the remote control. The userInputDescription
is given as an OpenXR path "/user/hand/right/input/select/click", which represents a generic “select”
action (like pulling a trigger or clicking) with the right hand. This implies that when the user
performs the select action (while pointing at or near the remote, presumably), the trigger fires. We
list two actions: an ACTION_ACTIVATE targeting the TV’s node (index 1) with activationStatus:
ENABLED to turn it on, and an ACTION_MEDIA referencing media 0 (which in
MPEG_media.media[0] is tv_video.mp4) with control MEDIA_PLAY to start playback of the video.

KHR_interactivity Implementation

Now, we implement the same scenario with KHR_interactivity. We need to create a behavior graph
that listens for the remote press event and triggers the TV on + video play actions. In the glTF, this
would be done inside the KHR_interactivity extension object. We will use a Custom Event node for
the remote press, and two Operation nodes for the actions. We’ll also assume we have an extension
for visibility or activation, and an extension to play the video. We assume the following:

• The Presentation Engine will send a custom event named "remote_pressed" when the user
clicks the remote object.

• The TV’s visibility is controlled by a boolean property visible on the TV node.

• The video playback can be started by setting a parameter on a video texture.

Given those assumptions, the behavior graph JSON could look like:

"extensionsUsed": [
 "KHR_interactivity",
 "KHR_node_visibility",
 "EXT_texture_video",

"extensions": {

"KHR_interactivity": {

 "nodes": [

 {

 "id": 0,

 "type": "Event",

51

 "eventType": "custom",

 "name": "remote_pressed",

 "outputs": {

 "flow": [1]

 }

 },

 {

 "id": 1,

 "type": "Operation",

 "operation": "setVisibility",

 "target": \{ "node": 1, "property": "visible" },

 "value": true,

 "outputs": \{

 "flow": [2]

 }

 },

 {

 "id": 2,

 "type": "Operation",

 "operation": "playMedia",

 "target": { "node": 1, "media": 0 },

 "outputs": {}

 }

]

 }

52

}

This example highlights how the same interactive outcome is achieved through each extension. In
MPEG_interactivity, we relied on the predefined trigger and action types and simply listed them in a
behavior object. In KHR_interactivity, we manually built the logic using behavior graph nodes. Both
realizations require integration with a media extension for the video and (in Khronos’s case) a
visibility/activation mechanism.

[1] WG03 N01221, 23090-14 2nd Edition, MPEG Scene Description

==

53

Chapter 6. Collected problem statements
and industry needs

6.1. On the support of real environment data
Source: m61811

6.1.1. General

In Augmented Reality (AR) experiences, virtual content is seamless inserted into the user real
environment using optical or video-see through devices. The knowledge of the user real
environment is then required for: * The positioning of the virtual objects based on AR anchors *
Consistent handling of collisions between virtual and real objects * Consistent rendering of virtual
and real objects including occlusion and lighting/shadowing aspects

This contribution provides an overview of how real environment data are handled (captured,
computed, stored and loaded) in some AR frameworks and proposes to investigate the support of
real environment data in MPEG-I Scene Description for transmission purpose.

6.1.2. Representation of the real environment

As shown in Figure 13, the real environment data are computed from embedded-sensor raw data.
An AR device may have several embedded sensors to scan the user environment, such as color
camera(s) and Light Detection and Ranging (LiDAR). The generated raw data are typically point
clouds, depth maps, pictures. An Inertial Measurement Unit (IMU) is also required to estimate the
current pose of the AR device when acquiring these data. Based on these sensor raw data, a
representation of the real environment is computed and the resulting real environment data may
have various formats:

• A single mesh, optionally textured, issued from a spatial mapping computation

• A semantic representation, optionally associated with a mesh segmentation, issued from a scene
understanding computation

• A real light mapping

Depending on the AR experiences, the most appropriate representation of the real environment is
computed:

• A single mesh representation may be sufficient for coherent collision handling and lighting

• A semantic representation (e.g. “desk”, “laptop”, “screen”, “floor”, “ceiling”, “wall”) may be
required for the definition of advanced anchoring and/or interaction

• A mesh segmentation is required for individual real object handling, such as object removal in a
diminished reality application

54

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/444

Figure 13. Computation of real environment data

The computation of the real environment data may either be done locally in the AR device or
remotely in a Spatial Computing Server. In the case of remote computation, the transmission of
such kind of data is in line with the Spatial Computing Server (SCS) requirements for eXtended
reality (XR) of the MPEG-I Phase 2 requirement document especially the requirement #134:

“The SCS shall provide XR Spatial Description in a standard representation format (e.g. scene
description) upon request of XR devices (UEs) on different platforms (desktop and mobile).”

6.1.3. Storing a representation of the real environment

The process of scanning the real environment and generating the corresponding representation
may be done prior to runtime. This approach is often related to quasi-static environment and has
the following main advantages:

• Availability of the real environment data at the beginning of the AR session

• Resource optimization of the AR devices resulting to power savings as no or limited scans are
required at runtime

• Support of low-end AR devices having no efficient sensors

• Consistency of the representation of a shared real environment between several heterogenous
AR devices

• Ability to build a scalable library of real environments (rooms, buildings, cities…)

Note: Having an initial scan may also be relevant for time-evolving real environments. Updating
some parts of the initial scan could be less time-consuming than performing a complete scan.

Generating real environment data before runtime requires efficient storage. Storing real
environment data in the Cloud has been investigated by ETSI Augmented Reality Framework (ARF).
As shown in Figure 14, a World Knowledge server is located in the Cloud and stores the real
environment data to be used by

• a Vision Engine for AR anchoring positioning/localization aspects

• a 3D Rendering Engine for consistent collision handling and rendering between virtual and real
objects

Figure 14. Global overview of the architecture of an AR system (from ETSI ARF)

55

Note: there is a need for a format to transmit real environment data between the World Knowledge
storage server and the 3D Rendering Engine in complement to the transmission of virtual contents,
which is already the scope of MPEG-I SD.

6.1.4. Examples of framework for real environment handling

Several frameworks are available to scan, compute, store and load real environment data for AR
experiences. An overview of the following frameworks is provided in this section:

• Microsoft’s Mixed Reality framework

• Apple’s ARKit framework

• Meta/Oculus framework

6.1.4.1. Microsoft’s Mixed Reality framework

The Microsoft Mixed Reality framework has been developed for the HoloLens 2 device. It is
composed of

• a spatial computing module, generating a mesh representation of the real environment as
shown in Figure 15

• a scene understanding module from Mixed Reality Toolkit (MRTK) version 2.7 based on OpenXR,
detecting and labeling planar surfaces for the placement of virtual content as shown in Figure
16

Figure 15. Mesh representation of the real environment after a spatial mapping computation

Figure 16. Semantic representation of the real environment after a scene understanding computation

A complete Microsoft’s Scene Understanding SDK for Unity is available. An example of a C# code to
scan, load and store real environment data based on the Scene Observer object is shown below

if (!SceneObserver.IsSupported())
{
 // Handle the error
}

// This call should grant the access we need.
await SceneObserver.RequestAccessAsync();

// Create Query settings for the scene update
SceneQuerySettings querySettings;

56

querySettings.EnableSceneObjectQuads = true;
// Requests that the scene updates quads.
querySettings.EnableSceneObjectMeshes = true;
// Requests that the scene updates watertight mesh data.
querySettings.EnableOnlyObservedSceneObjects = false;
// Do not explicitly turn off quad inference.
querySettings.EnableWorldMesh = true;
// Requests a static version of the spatial mapping mesh.
querySettings.RequestedMeshLevelOfDetail = SceneMeshLevelOfDetail.Fine; // Requests
the finest LOD of the static spatial mapping mesh

// Initialize a new Scene
Scene myScene = SceneObserver.ComputeAsync(querySettings, 10.0f).GetAwaiter()
.GetResult();

// Create Query settings for the scene update
SceneQuerySettings querySettings;

// Compute a scene but serialized as a byte array
SceneBuffer newSceneBuffer = SceneObserver.ComputeSerializedAsync(querySettings, 10
.0f).GetAwaiter().GetResult();

// If we want to use it immediately we can de-serialize the scene ourselves
byte[] newSceneData = new byte[newSceneBuffer.Size];
newSceneBuffer.GetData(newSceneData);
Scene mySceneDeSerialized = Scene.Deserialize(newSceneData);

// Save newSceneData for later

6.1.4.2. Apple’s ARKit framework

On a fourth-generation iPad Pro running iPad OS 13.4 or later, Apple’s ARKit uses the LiDAR
Scanner to create a mesh representation of the user real environment. Then this mesh is further
segmented and multiple anchors, called ARMeshAnchor, are assigned to the resulting set of
segmented meshes. As shown in Figure 17, a semantic labeling is performed for the real objects that
ARKit can identify such as ceiling, door, floor, seat, table, wall and window labels.

Figure 17. Semantic labeling of Apple’s ARKit

These real environment data attached to the ARMeshAnchors can be saved and loaded by

57

serializing/deserializing an ARWorldMap as shown in Figure 18.

Figure 18. Saving and loading an Apple’s ARKit ARWorldMap

6.1.4.3. Meta/Oculus framework

The Meta/Oculus framework has ben developed for Meta Quest 2 and Meta Quest Pro devices. The
scene understanding computation provides a scene model, which is a representation of the user
real environment. The scene model contains Scene Anchors, with each anchor being attached to
geometric components and semantic labels. The floor, ceiling, wall_face, desk, couch, door_frame
and window_frame labels are currently supported as shown in Figure 19.

Figure 19. Semantic labeling of the Meta/Oculus Scene Understanding

The scene understanding computation is based on the Khronos OpenXR standard and relies on the
Meta OpenXR XR_FB_scene extension. By using Unity as Presentation Engine, an OVRSceneManager
allows access to the scene model. An OVRSceneAnchor component corresponds to a scene anchor.
The semantic classification of a scene anchor is managed by the OVRSemanticClassification.

A Scene Model is generated by the Scene Capture system flow that lets users walk around and
capture their scene. Users have complete control over the manual capture experience and decide
what they want to share about their environment.

As shown below, the OVRSceneManager provides functions

• to launch a scene capture to generate a Scene Model

• to load an existing Scene Model

OVRSceneManager.RequestSceneCapture()
OVRSceneManager.LoadSceneModel()

58

Chapter 7. Avatar

7.1. Update of the Description of the MPEG reference
avatar model Morgan
Source: m69577

7.1.1. Introduction

The MPEG-IoMT group presented a revision of data format and APIs for body keypoints extractor
[1]. In parallel, the MPEG-I-SD group presented a reference avatar, Morgan [2]. The goal of this
contribution is to propose an extension of the previous version of the description of Morgan, which
does not change the previous one. This is compatible with IoMT developments.

This contribution includes:

• semantics of body mesh parts (Section 1) of Morgan

• semantics of skeleton joints (Section 2) of Morgan

• mapping between IoMT keypoints and Morgan (Section 3)

7.1.1.1. Semantics of Body Mesh Parts

This section provides a description of Morgan body parts. These body parts, as presented in Annex
H [2], are mesh sub-parts including vertices and faces.

Face

Back/Neck/Ears

Chest Front

EyeLeft

Eye Right

UpperJaw

MouthBag

LowerJaw

Hand Right

LowerArm Right

UpperArmRight

ShoulderFront Right

AbdomenFront

PelvisFront Right

UpperLeg Right

LowerLeg Right

Foot Right

HandLeft

LowerArmLeft

UpperArmLeft

ShoulderFrontLeft

Pelvis FrontLeft

UpperLegLeft

LowerLegLeft

Foot Left

ShoulderBackLeft

Chest Back

AbdomenBack

Pelvis BackLeft

ShoulderBackRight

Pelvis Back Right

Figure 1: body semantic areas

Name Definition

Head It describes points of skeleton and articulation of head part.

Full It describes mesh vertices/faces of the whole body.

59

https://git.mpeg.expert/MPEG/Systems/SceneDescription/MPEG-Contributions/-/issues/751

Name Definition

UpperBody It describes mesh vertices/faces of the upper body part.

LowerBody It describes mesh vertices/faces of the lower body part.

Head It describes mesh vertices/faces of the head.

Face It describes mesh vertices/faces of the face.

Back/Neck/Ears It describes mesh vertices/faces of the back of the head, the neck and the
ears.

MouthBag It describes mesh vertices/faces of the mouth bag.

LowerJaw It describes mesh vertices/faces of the lower part of the jaw.

UpperJaw It describes mesh vertices/faces of the upper part of the jaw.

EyeLeft It describes mesh vertices/faces of the left eye

EyeRight It describes mesh vertices/faces of the right eye

Thorax It describes mesh vertices/faces of the thorax

Chest It describes mesh vertices/faces of the chest

UpperBack It describes mesh vertices/faces of the upper back

Shoulders It describes mesh vertices/faces of the shouldrs

ShoulderFront It describes mesh vertices/faces of the front part of the shoulders

ShoulderFrontLeft It describes mesh vertices/faces of the left front shoulder

ShoulderFrontRight It describes mesh vertices/faces of the right front shoulder

ShoulderBack It describes mesh vertices/faces of the back part of the shoulders

ShoulderBackLeft It describes mesh vertices/faces of the left part of the shoulder

ShoulderBackRight It describes mesh vertices/faces of the right part of the shoulder

ArmLeft It describes mesh vertices/faces of the left arm

UpperArmLeft It describes mesh vertices/faces of the upper part of the left arm

LowerArmLeft It describes mesh vertices/faces of the lower part of the left arm

HandLeft It describes mesh vertices/faces of the left hand

UpperArmRight It describes mesh vertices/faces of the upper part of the right arm

LowerArmRight It describes mesh vertices/faces of the lower part of the right arm.

HandRight It describes mesh vertices/faces of the right hand.

Abdomen It describes mesh vertices/faces of the abdomen.

AbdomenFront It describes mesh vertices/faces of the front part of the abdomen.

LowerBack It describes mesh vertices/faces of the lower part of the back.

LowerBody It describes mesh vertices/faces of the lower body part.

Pelvis It describes mesh vertices/faces of the pelvis.

PelvisFront It describes mesh vertices/faces of the front part of the pelvis.

60

Name Definition

PelvisFrontLeft It describes mesh vertices/faces of the left front part of the pelvis.

PelvisFrontRight It describes mesh vertices/faces of the right front part of the pelvis.

PelvisBack It describes mesh vertices/faces of the back of the pelvis.

PelvisBackLeft It describes mesh vertices/faces of the left back part of the pelvis.

PelvisBackRight It describes mesh vertices/faces of the right back part of the pelvis.

LegLeft It describes mesh vertices/faces of the left leg.

UpperLegLeft It describes mesh vertices/faces of the upper part of the left leg.

LowerLegLeft It describes mesh vertices/faces of the lower part of the left leg.

FootLeft It describes mesh vertices/faces of the left foot.

LegRight It describes mesh vertices/faces of the right leg.

UpperLegRight It describes mesh vertices/faces of the upper part of the right leg.

LowerLegRight It describes mesh vertices/faces of the lower part of the right leg.

FootRight It describes mesh vertices/faces of the right foot.

• + *

7.1.1.2. Semantics of Skeleton Joints

This section provides a description of Morgan’s skeleton. This skeleton, as presented in Annex H [2],
is a hierarchy of joints.

Figure 2: Body skeleton joints hierarchy on Morgan

61

Hands
Hand_Left

• ProximalThumb_Left

• IntermediateThumb_Left

• DistalThumb_Left

• ProximalIndex_Left

• IntermediateIndex_Left

• DistalIndex_Left

• TopIndex_Left

• ProximalMiddle_Left

• IntermediateMiddle_Left

• DistalMiddle_Left

• TopMiddle_Left

• ProximalRing_Left

• IntermediateRing_Left

• DistalRing_Left

• TopRing_Left

• ProximalLittle_Left

• IntermediateLittle_Left

• DistalLittle_Left

• TopLittle_Left

Figure 3: Hand skeleton joints hierarchy on Morgan

==

Name Definition

Hips It describes the skeleton joint of the hips

Spine It describes the skeleton joint of the spine

Chest It describes the skeleton joint of the chest

UpperChest It describes the skeleton joint of the upper chest

Shoulder_Left It describes the skeleton joint of the left shoulder

UpperArm_Left It describes the skeleton joint of the upper part the left arm

LowerArm_Left It describes the skeleton joint of the lower part of the left arm

Hand_Left It describes the skeleton joint of the left hand

ProximalThumb_Left It describes the skeleton joint of the proximal part of the left thumb

IntermediateThumb_Left It describes the skeleton joint of the intermediate part of the left
thumb

DistalThumb_Left It describes the skeleton joint of the distal part of the left thumb

ProximalIndex_Left It describes the skeleton joint of the proximal part of the left index

IntermediateIndex_Left It describes the skeleton joint of the intermediate part of the left
index

DistalIndex_Left It describes the skeleton joint of the distal part of the left index
finger

TopIndex_Left It describes the skeleton joint of the top part of the left index finger

ProximalMiddle_Left It describes the skeleton joint of the proximal part of the left middle
finger

62

Name Definition

IntermediateMiddle_Left It describes the skeleton joint of the intermediate part of the left
middle finger

DistalMiddle_Left It describes the skeleton joint of the distal part of the left middle
finger

TopMiddle_Left It describes the skeleton joint of the top part of the left middle finger

ProximalRing_Left It describes the skeleton joint of the proximal part of the left ring
finger

IntermediateRing_Left It describes the skeleton joint of the intermediate part of the left ring
finger

DistalRing_Left It describes the skeleton joint of the distal part of the left ring finger

TopRing_Left It describes the skeleton joint of the top part of the left ring finger

ProximalLittle_Left It describes the skeleton joint of the proximal part of the left little
finger

IntermediateLittle_Left It describes the skeleton joint of the intermediate part of the left
little finger

DistalLittle_Left It describes the skeleton joint of the distal part of the left little finger

TopLittle_Left It describes the skeleton joint of the top part of the left little finger

Shoulder_Right It describes the skeleton joint of the right shoulder

UpperArm_Right It describes the skeleton joint of the upper part of the right arm

LowerArm_Right It describes the skeleton joint of the lower part of the right arm

Hand_Right It describes the skeleton joint of the right hand

ProximalThumb_Right It describes the skeleton joint of the proximal part of the right
thumb

IntermediateThumb_Right It describes the skeleton joint of the intermediate part of the right
thumb

DistalThumb_Right It describes the skeleton joint of the distal part of the right thumb

ProximalIndex_Right It describes the skeleton joint of the proximal part of the right index

IntermediateIndex_Right It describes the skeleton joint of the intermediate part of the right
index

DistalIndex_Right It describes the skeleton joint of the distal part of the right index
finger

TopIndex_Right It describes the skeleton joint of the top part of the right index finger

ProximalMiddle_Right It describes the skeleton joint of the proximal part of the right
middle finger

IntermediateMiddle_Right It describes the skeleton joint of the intermediate part of the right
middle finger

63

Name Definition

DistalMiddle_Right It describes the skeleton joint of the distal part of the right middle
finger

TopMiddle_Right It describes the skeleton joint of the top part of the right middle
finger

ProximalRing_Right It describes the skeleton joint of the proximal part of the right ring
finger

IntermediateRing_Right It describes the skeleton joint of the intermediate part of the right
ring finger

DistalRing_Right It describes the skeleton joint of the distal part of the right ring
finger

TopRing_Right It describes the skeleton joint of the top part of the right ring finger

ProximalLittle_Right It describes the skeleton joint of the proximal part of the right little
finger

IntermediateLittle_Right It describes the skeleton joint of the intermediate part of the right
little finger

DistalLittle_Right It describes the skeleton joint of the distal part of the right little
finger

TopLittle_Right It describes the skeleton joint of the top part of the right little finger

Neck It describes the skeleton joint of the neck

Head It describes the skeleton joint of the head

Eye_Left It describes the skeleton joint of the left eye

Eye_Right It describes the skeleton joint of the right eye

Jaw It describes the skeleton joint of the jaw

UpperLeg_Left It describes the skeleton joint of the upper part of the left leg

LowerLeg_Left It describes the skeleton joint of the lower part of the left leg

Foot_Left It describes the skeleton joint of the left foot

Toes_Left It describes the skeleton joint of the left toes

UpperLeg_Right It describes the skeleton joint of the upper part of the right leg

LowerLeg_Right It describes the skeleton joint of the lower part of the right leg

Foot_Right It describes the skeleton joint of the right foot

Toes_Right It describes the skeleton joint of the right toes

7.1.1.3. Mapping with IoMT

The following table provides a mapping between IoMT skeleton joints [1] and Morgan’s skeleton
joints. The left column indicates the IoMT skeleton joint and, on the right column, the
corresponding Morgan’s skeleton joint.

64

IoMT skeleton joint Morgan skeleton joint

Pelvis Hips

RightPelvis UpperLeg_Right

LeftPelvis UpperLeg_Left

RightKnee LowerLeg_Right

LeftKnee LowerLeg_Left

RightAnkle Foot_Right

LeftAnkle Foot_Left

LumbarVertebra1 Spine

ThoracicVertebra8 Chest

ThoracicVertebra1 Upper_Chest

CervicalVertebra5 Neck

CervicalVertebra1 Head

RightClavicle Shoulder_Right

RightShoulder UpperArm_Right

RightElbow LowerArm_Right

RightWrist Hand_Right

LeftClavicle Shoulder_Left

LeftShoulder UpperArm_Left

LeftElbow LowerArm_Left

LeftWrist Hand_Left

7.1.2. References

[1] m67324 - Revision of data format and APIs for IoMT body keypoint extractor. Rennes, France -
April 2023.

[2] N01025 - Revised text of ISO/IEC 23090-14 DAM 2: Support for Haptics, Augmented Reality,
Avatars, Interactivity, MPEG-I Audio, and Lighting

65

Appendix A: Disclaimer


The formatting of the document is based on the Khronos glTF specification
formatting under CC-BY 4.0.


The extensions information are automaticaly generated using wetzel tool under
Apache License 2.0.

66

https://github.com/CesiumGS/wetzel/

	Technology under Consideration for ISO/IEC 23090-14
	Table of Contents
	Chapter 1. Extensions
	1.1. Support of Spatial Computing in SD*
	1.1.1. Introduction
	1.1.2. API to access to an external spatial computing module
	1.1.3. Semantic Update of the MPEG_anchor extension
	1.1.4. Processing Model
	1.1.5. References

	Chapter 2. Codec Support
	2.1. Dynamic mesh support in scene description
	2.2. Support for multiple atlases for MIV applications (MPEG142)
	2.2.1. Multiple atlases
	2.2.2. References

	2.3. Support for multi-view video and multi-channel audio sources
	2.3.1. Introduction
	2.3.2. Potential Solution to Support Multi-view Video
	2.3.3. References

	Chapter 3. Interfaces
	3.1. Supporting Multiple Viewers in the Media Access Function
	3.1.1. General
	3.1.2. Proposed Updates to MAF API

	3.2. Generic API for Presentation Engine
	3.2.1. Generic Render Control API
	3.2.2. Extension for Audio Node Mapping

	Chapter 4. MPEG-I Audio in Scene Description
	4.1. On spatial synchronization between graphs
	4.1.1. Attempt problem definition for the spatial synchronization
	4.1.2. Approach proposal for the spatial synchronization
	4.1.3. Conclusion
	4.1.4. References

	4.2. Immersive audio support in Scene Description
	4.2.1. Introduction
	4.2.2. Main assumptions
	4.2.3. Support of immersive audio in Scene Description
	4.2.4. References

	Chapter 5. Interactivity framework
	5.1. On event-based scene update
	5.1.1. General
	5.1.2. A use case for event based updates
	5.1.3. JSON patch limitations
	5.1.4. Semantics for event-based update

	5.2. Mapping interactivity to Khronos extension
	5.2.1. Introduction
	5.2.2. Overview of both Interactivity Frameworks

	Chapter 6. Collected problem statements and industry needs
	6.1. On the support of real environment data
	6.1.1. General
	6.1.2. Representation of the real environment
	6.1.3. Storing a representation of the real environment
	6.1.4. Examples of framework for real environment handling

	Chapter 7. Avatar
	7.1. Update of the Description of the MPEG reference avatar model Morgan
	7.1.1. Introduction
	7.1.2. References

	Appendix A: Disclaimer

